Area Wide Optimization Program

UTAH
Individual Program
Background Information
2019
Name of Agency: Utah Department of Environmental Quality, Division of Drinking Water

Official Recognition of AWOP
Please provide the AWOP start date and describe any official recognition of AWOP in agency newsletters, web pages, awards programs, annual meetings, etc.

Pairing AWOP with the Utah Water Quality Alliance in 2005.

Official Adoption of AWOP Goals
Please describe when and how AWOP goals were adopted by your agency and communicated to the water systems.

Utah Water Quality Alliance has adopted water quality goals for each plant in the Alliance. The common goals are:
- IFE Turbidity of 0.10 NTU 95% time
- Turbidity spikes <0.5 NTU for <15 min
- Settled turbidity <1.0 NTU 95% time
- Turbidity after backwash <0.3 NTU before filter goes back on line
- THMs & HAAs <80/60 µg/L at each point in distribution system in each quarter, or <40/30 µg/L averaged over all locations and 4 quarters
- Chlorine residual of >0.20 mg/L at all points of distribution system
- TOC removal <2 mg/L in finished water or required % removal met in each month
- Monitoring of taste & odor and minimizing customer complaints

National Optimization Goals adopted by your PWSS Program – Check all that apply:
(refer to Attachment I for descriptions of the NOLT optimization goals.)

Water Treatment Plants
- Microbial (Turbidity): Raw Water__X__ Individual Settled__X__ CFE__X__ IFE__X__
- Post BW w/FTW__X__ Post BW wo/FTW__X__ Disinfection (CT) __X__

- DBPs (TTHM/HAA5): Plant Effluent__X__ Enhanced Coagulation__X__ Disinfection__X__

- Chloramine Application: Ammonia Control_NA__ Dosing (Chlorine & Ammonia) _X__

Distribution Systems
- Individual Site DBPs _X__ Long Term System DBPs__X__ Tank Operations____
- Secondary Disinfection, Free Chlorine __X__
- Secondary Disinfection, Chloramines (monochloramine, Ammonia & Nitrite) __NA__

Modifications to the national goals or other optimization goals utilized by your Agency:
Please describe any modified AWOP goals and/or any additional optimization goals adopted by your agency and communicated to the water systems.

Water quality and operational goals, established for the Alliance, are modified by each treatment plant based on water quality challenges, plant infrastructure, and size.
Description of Current AWOP Team Members and Responsibilities

Please provide the name, position/title, description of AWOP duties and approximate FTE that each team member spends on AWOP. Also indicate who serves as the AWOP team lead/point of contact.

Example: Nevel O. Meter, District Engineer, PBT trainer, ~ 0.3 FTE

(Note that if you submitted this information in 2017, that information is being provided and if there are no changes, simply indicate “no change” in this section.)

1. AWOP Team Leader: Eva Nieminski, Ph.D., technical assistance and research coordinator – coordinates Utah Water Quality Alliance and applies AWOP principles, programs, and tools to optimization efforts of the Alliance members (most surface water treatment plants in Utah)

Description of Former AWOP Team Members:

Please provide the name of former AWOP team members, and their reason for leaving the team. This information is for historical purposes and also to support networking as AWOP continues to expand.

No change

<table>
<thead>
<tr>
<th>Inventory of State-Wide Treatment Facilities¹</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid rate filtration treatment plants² ³</td>
<td>60</td>
</tr>
<tr>
<td>Utilizing static settling without tubes or plates</td>
<td>41</td>
</tr>
<tr>
<td>Utilizing static settling with tubes or plates</td>
<td>12</td>
</tr>
<tr>
<td>Utilizing sludge blanket clarification (upflow, pulsator)</td>
<td>1</td>
</tr>
<tr>
<td>Utilizing contact adsorption clarification</td>
<td>1</td>
</tr>
<tr>
<td>Utilizing sludge recirculation (including ballasted clarification)</td>
<td>1</td>
</tr>
<tr>
<td>Utilizing DAF, or other alternative clarification process</td>
<td>2</td>
</tr>
<tr>
<td>Utilizing direct/in-line filtration</td>
<td>6</td>
</tr>
<tr>
<td>Utilizing packaged filtration (package plants)</td>
<td>12</td>
</tr>
<tr>
<td>Slow sand filter plants</td>
<td>2</td>
</tr>
<tr>
<td>Diatomaceous earth filter plants</td>
<td>0</td>
</tr>
<tr>
<td>Membrane treatment plants</td>
<td>8</td>
</tr>
<tr>
<td>Bag or cartridge filtration plants</td>
<td>2</td>
</tr>
<tr>
<td>Primary disinfectant</td>
<td>60</td>
</tr>
<tr>
<td>Free chlorine</td>
<td>60</td>
</tr>
<tr>
<td>Chloramines</td>
<td>0</td>
</tr>
<tr>
<td>Ozone</td>
<td>7</td>
</tr>
<tr>
<td>UV</td>
<td>4</td>
</tr>
<tr>
<td>Secondary disinfectant</td>
<td>60</td>
</tr>
<tr>
<td>Free chlorine</td>
<td>60</td>
</tr>
<tr>
<td>Chloramines</td>
<td>0</td>
</tr>
</tbody>
</table>

¹Limited to surface water treatment plants (includes surface, GUDI, blended sources).
²All surface water treatment plants, except cartridge, membrane and slow sand.
³When a plant utilizes multiple treatment processes or configurations identified below, please include them all in this inventory, e.g., a package plant that utilizes a CAC will be included as a rapid rate plant using CAC and packaged filtration.
AWOP Vision:
Please describe the vision for your AWOP
Since Utah does not have an ‘official” AWOP program, the AWOP principles, goals, tools, and activities are implemented by the Utah Water Quality Alliance. The Alliance members maintain these goals, tools, and activities without the State’s oversight or incentives.

Status Component Implementation:
Please describe status component activities that are implemented in your agency, e.g., (are water systems ranked according to public health risk and how is this information used; how is water system data integrity ensured):
Utah does not have an ‘official” AWOP program. Plants are ranked by turbidity performance but the records are kept in the Utah Water Quality Alliance.

Targeted Performance Improvement (TPI) Implementation:
Please list all activities that are implemented as TPI activities in your state, e.g., CPEs, PBT, Enhanced Sanitary Surveys, technical assistance, other):
Informative meetings with water treatment plant personnel, providing technical assistance, discussing AWOP concepts and components, while seeking opportunities of implementation along with the existing programs, are set in the Utah Water Quality Alliance. Some AWOP activities are performed by the Utah Water Quality Alliance.

AWOP Maintenance Component Implementation:
Integrate
Please check the following areas where AWOP has been integrated into the PWSS Program:
Plan Reviews _____ Permitting_____ Capacity Development_____ Operator Training_____ Technical Assistance_____ DWSRF Prioritization_____ Enforcement_____ Sanitary Surveys____ Other(identify)______________________

Enhance
Please describe any AWOP enhancements that have been implemented in your program. One example could include modifying status component criteria

Sustain
Please describe any activities that you implement to sustain your agency’s AWOP. Some examples could include efforts to promote and incentivize AWOP (e.g., publish regular newsletter, awards program, AWOP participation = higher ranking for grant/loan funding, etc.).
Lessons Learned:
Please list “lessons learned” that you feel would be helpful to other programs, e.g., how to build and maintain internal support, how to integrate AWOP into your PWSS program, etc). If you are new to AWOP, please list a question or concern you’d like to know more about.

Utah Water Quality Alliance has been successful in Utah since 1994. Its goals are water treatment plant optimization and production of the highest possible quality of drinking water. The Alliance uses many of the AWOP tools. The best impact of introducing the AWOP to the Alliance is the commitment to implement AWOP tools in optimization of treatment.

It is difficult to bring AWOP training to a state that doesn’t have an official AWOP program and staff. Also, it is difficult for the Utah State employee to participate in AWOP activities, held out-of-state. With ASDWA’s help, that is possible; otherwise, not possible at all. Thanks ASDWA!
Attachment I: Optimization Goals Adopted by the NOLT

<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Applies to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial</td>
<td>Minimum Data Monitoring Goal Raw Water Turbidity</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Record maximum daily raw water turbidity.</td>
</tr>
</tbody>
</table>
| Microbial | Individual Sedimentation Basin Performance and Monitoring Goals | Rapid Rate Filtration Plants | — Settled water turbidity ≤ 2 NTU in 95% of readings when the annual average raw turbidity is > 10 NTU. Optimization is based on the daily maximum values recorded from all readings.
— Settled water turbidity ≤ 1 NTU in 95% of readings when the annual average raw turbidity is ≤ 10 NTU. Optimization is based on the daily maximum values recorded from all readings.
— Record individual sedimentation basin effluent turbidity readings at intervals of 4-hours or less if taking grab samples, or 15 minutes or less for continuous monitoring. |
| Microbial | Individual and Combined Filter Performance and Monitoring Goals | Rapid Rate Filtration Plants | — Combined filter effluent turbidity ≤ 0.10 NTU in 95% of readings. Optimization is based on the daily maximum values recorded from all readings.
— Individual filter effluent turbidity ≤ 0.10 NTU in 95% of readings (excluding 15-minute period following filter backwash). Optimization is based on the daily maximum values recorded from all readings.
— Post backwash individual filter effluent turbidity for filters without filter-to-waste capability: Maximum individual filter effluent turbidity following backwash ≤ 0.30 NTU and achieve ≤ 0.10 NTU within 15 minutes.
— Post backwash individual filter effluent turbidity for filters with filter-to-waste capability: Minimize individual filter effluent turbidity during filter-to-waste period and record maximum value. Return the filter to service at ≤ 0.10 NTU.
— Record individual and combined filter effluent turbidity readings at intervals of 1-minute or less for continuous monitoring. |
| Microbial | Disinfection Performance and Monitoring Goals | Rapid Rate Filtration Plants | — Meet CT requirements to achieve inactivation of Giardia and viruses plus a system-specific factor of safety.
— Record disinfectant residual, temperature, and pH at maximum daily flow for CT calculations. |
| Disinfection By-Product | Plant Effluent Disinfection Byproducts (DBPs) Performance and Monitoring Goals | Surface Water and Groundwater Under the Direct Influence of Surface Water Plants | — System Specific Targets: Could be a discrete value or range that is based on a running annual average. Recommended goal value/range should be 30% to 50% of long term LRAA goals (e.g., 20-30 ppb for TTHM, 15-20 ppb for HAAS).
— Collect quarterly TTHM and HAAS samples at the plant effluent and distribution system compliance sites. |
| Disinfection By-Product | Enhanced Coagulation Performance and Monitoring Goals | Surface Water and Groundwater Under the Direct Influence of Surface Water Plants | — Meet Stage 1 D/DBP Rule TOC removal requirements for enhanced coagulation, which are based on source water alkalinity and TOC levels, or an alternative compliance criterion, as a running annual average (RAA) of the performance ratio (actual TOC removal/required TOC removal) plus a factor of safety of 10% (or performance ratio ≥ 1.1).
— Collect monthly total organic carbon samples for raw and treated water (only applies to parent systems). |
| Disinfection By-Product | Disinfection Performance and Monitoring Goal | Surface Water and Groundwater Under the Direct Influence of Surface Water Plants | — Meet CT requirements to achieve inactivation of Giardia and viruses plus a system-specific factor of safety.
— Record disinfection residual, temperature, and pH at maximum daily flow for CT calculations (only applies to parent systems). |
— Long-Term System Goal: Average of Maximum Locational Running Annual Average TTHM/HAAS values not to exceed 60/40 ppb (the average of the last 8 quarters cannot exceed 60/40 ppb).
— For systems in compliance with the TTHM and HAAS MCLs, collect quarterly DBP samples at all compliance locations; for systems not in compliance, collect monthly samples. |
|---|---|---|---|
| Free Chlorine Distribution System | Disinfection Performance and Monitoring Goals | Parent and Consecutive Water Systems that Utilize Free Chlorine as a Secondary Disinfectant | — Maintain ≥ 0.20 mg/L free chlorine residual at all monitoring sites in the distribution system, at all times.
— Monitoring should be performed at least monthly, but more frequently at critical times (i.e., summer months).
— Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites base on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total). |
| Plants that Utilize Chloramine | Disinfection: Ammonia Control Performance and Monitoring Goals | Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant | — Maintain a detectable free ammonia residual in the plant effluent ≤ 0.10 mg/L as NH3-N.
— Monitor free ammonia at least once per day in the plant effluent.
• The monitoring frequency may be adjusted based on the variability observed over an extended period of time.
• Free ammonia may be monitored in the source water periodically (e.g., once per week) to assess variability. |
| Plants that Utilize Chloramine | Operational Guideline Chlorine and Ammonia Dosing | Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant | — Maintain a detectable free ammonia residual in the plant effluent ≤ 0.10 mg/L as NH3-N.
— Monitor free ammonia at least once per day in the plant effluent.
• The monitoring frequency may be adjusted based on the variability observed over an extended period of time.
• Free ammonia may be monitored in the source water periodically (e.g., once per week) to assess variability. |
| Chloramine Distribution System | Disinfection: Monochloramine and Nitrification-Related Parameters Performance and Monitoring Goals | Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant | — Maintain ≥ 1.50 mg/L monochloramine residual at all monitoring sites in the distribution system, at all times, to provide a disinfection barrier against both microbial contamination and nitrification prevention.
— Monitor monochloramine, free ammonia, and nitrite in the distribution system and at the entry points (to establish a baseline).
• Monochloramine and free ammonia should be monitored at all sample locations.
• Nitrite should be monitored at sample locations where monochloramine is ≤ 1.50 mg/L; nitrate may also be monitored, to further assess nitrification.
• Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites base on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total).
• Monitoring should be done at least monthly, but more frequently at critical times (e.g., summer months). |
| Distribution System | Operational Guidelines Tank Operations | Parent and Consecutive Water Systems that Contain Storage Tanks (any secondary disinfectant) | — Maintain an average turnover time < 5 days; or establish and maintain a water turnover rate at each storage facility.
— Maintain good mixing (i.e., Performance Ratio ≥ 1) at all times; for tanks where the PR cannot be calculated, adequate mixing (i.e., uniform water quality) should be confirmed by alternate means (e.g., tank profiling/water quality sampling). |