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Introduction: Why data science is helpful to State Drinking Water Administrators 
and water systems 

Substantial uncertainty still surrounds the nation’s water systems regarding the number and locations of 
lead service lines (LSLs). This uncertainty stems primarily from inadequate records and data. 

The accuracy of these records carries significant implications for utility operations, public health, 
regulatory compliance, and long-term asset management. Inaccurate or missing records make it difficult 
for utilities to understand the size of their LSL inventories, prepare budgets for replacement programs, 
address potential public health risks, prioritize high-likelihood homes for replacement, comply with state 
and federal regulations, control the cost of replacement programs, use this information to inform other 
capital projects, and communicate accurate information to their customers. 

EPA’s Proposed Lead and Copper Rule Revisions mandate that all US community water systems must 
develop an LSL inventory or demonstrate the absence of LSLs in their system within the first three years 
of final rule publication (the final rule publication is expected in the Fall of 2020). Each LSL inventory must 
be updated annually thereafter. Some states already have rules that go further than the existing federal 
guidance. Recent federal legislative efforts that specifically include funding for LSL replacement in 
addition to existing targeted funding and financing for full LSL removal make it even more imperative that 
utilities know the composition of their service lines (SLs). Such programs include the 2016 Water 
Infrastructure Improvements for the Nation Act grant programs, the Drinking Water State Revolving Fund 
(DWSRF), and the Water Infrastructure Finance and Innovation Act (WIFIA) program. 

The kind of uncertainty that the LSL question presents is well-suited for data science methods that have 
evolved in recent years. There has been an increased adoption of predictive methods by utilities to guide 
their decision-making. With improved technology and innovative modeling approaches, there is greater 
ability to generate precise predictions for increasingly complex questions. Given the significant public 
health, regulatory, and financial implications of these decisions, it is essential that regulators and utilities 
be aware of and adhere to some fundamental statistical methods when using predictive methods to 
inform SL work. 

The appropriate application of these methods supports both regulators and utilities in their work to 
ensure safe, clean, and affordable drinking water. Some of the principles in this white paper, such as good 
data management and transparency, should be considered as an important foundation for any utility, 
regardless of size or approach to building an LSL inventory. The principles contained in this document are 
relevant for all types of statistical analyses, from a simple linear regression to a machine learning model. 
Some of the more complex data science methods can be utilized for higher levels of sophistication and 
accuracy. Regardless of the utility size or statistical method used, these principles can inform a 
straightforward, data-driven approach. 

Increasing the accuracy of LSL inventories yields actionable data that can be used to make replacement 
programs more efficient and reduce the risk of potential lead exposure. Having a clearer picture of how 
many LSLs might be in a water system and where they are concentrated is essential for accurate 
budgeting and management at the outset of and throughout replacement programs. Excavating every 
unconfirmed water SL would eliminate all uncertainty for inventories, but that kind of effort would cost 
too much money and time for utilities. Utilizing good data management and data science techniques can 

https://www.epa.gov/ground-water-and-drinking-water/lead-service-line-replacement
https://www.asdwa.org/wp-content/uploads/2019/08/ASDWA_Developing-Lead-Service-Line-Inventories.pdf
https://www.asdwa.org/wp-content/uploads/2019/08/ASDWA_Developing-Lead-Service-Line-Inventories.pdf
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help water utilities build home-by-home predictions of SL material to guide decision-making for inventory 
and replacements programs. 

Utilities can use multiple methods of SL identification, and they come with varying levels of accuracy. 
Visual verification of SL materials, through in-home inspection, curb box inspection, or potholing or 
hydrovacing on both sides of the line provide certainty of the pipe materials for the sections of SL that 
they reveal. Sequential sampling of an SL taken at the tap and analyzed for metals has also been used to 
gain insight about pipe composition but does not provide the certainty of visually inspecting each portion 
of the line. This list is not exhaustive and there may be other methods used to determine SL material. 
More information can be found on EPA’s Lead Service Line Identification and Replacement Webinars. 
These methods are not the focus of this paper but data collected from these efforts can certainly be used 
in conjunction with the principles of this paper and to inform a statistical analysis. 

Given that there will always be some uncertainty, these principles provide industry best practices to 
reduce that uncertainty through well-applied statistical methods, as well as steps to overcome practical 
issues in creating better SL materials inventories. The sections below detail the principles needed to use 
well-established, data-driven practices from statistics in order to estimate the SL material at every home 
in your system. These sections also recognize the realities that each water system is unique; their existing 
data management practices vary; their abilities to perform data analyses, or access and/or afford the 
services of experts who can, at each level of complexity, also vary. With this in mind, we put forward the 
following set of guiding principles:  

1. Clean data management and organization;
2. Not accepting all historical records as truth;
3. Conducting a representative randomized sample of service lines;
4. Transparency in public outreach and reproducibility; and
5. Accuracy on held-out sample.

These principles can be used by regulators in guidance and/or rulemaking to encourage water systems to 
plan strategically, make data-driven decisions, set budgets and requests for funds, build capacity in some 
skill areas, communicate with the public and build trust, and, most importantly, continue to protect the 
health of all individuals in the system. 

Throughout this paper, we will show how these methods were used by the city of Flint, Michigan and 
regulators in practice as part of Flint’s LSL replacement program. In 2016, a team of researchers from the 
University of Michigan began working with Flint’s SL replacement program. By that time, it was 
understood that the city’s LSLs were the main source of lead in the drinking water but two key questions 
stood in the way of their progress: how many lead pipes are in the city and which homes have lead pipes? 
The researchers applied fundamental statistical methods to this problem. While the specific nature of the 
public health emergency in Flint is unlike the situation in other cities across the country, the inaccurate, 
outdated, and incomplete nature of their data is consistent with what other communities have faced in 
their LSL replacement programs. In this way, the Flint case study can provide insight for other water 
systems across the US. Other cities have also started using predictive models to guide their replacement 
programs. Their experiences and lessons will continue to inform how these methods are applied. 

In 2019, the University of Michigan researchers who worked in Flint formed BlueConduit with the mission 
of supporting the large-scale removal of lead and other dangerous pipe materials from cities. 

https://www.lslr-collaborative.org/identifying-service-line-material.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350769/
https://www.epa.gov/dwreginfo/lead-service-line-identification-and-replacement-webinars
https://www.epa.gov/dwreginfo/lead-service-line-identification-and-replacement-webinars
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Principle 1: Clean data management and organization 

The first principle in running any statistical analysis is to make sure that data is organized and consistent. 
Ensuring the data is organized means all of the information related to a point of service is associated with 
that point of service (i.e., a home’s specific water SL). This refers to how the data is organized in the 
spreadsheet, database, or GIS system. Based on the number of data points and information collected, a 
system may be able to use Microsoft Excel and Access or may need to use a more sophisticated software 
to handle larger amounts of data. In practice, this means that each home/SL is a row in the spreadsheet 
and each column of the spreadsheet refers to different data points available about each SL (e.g., parcel 
information, age of home, water testing results, inspection records, historical records -- see Table 1 on 
page 5). Separate columns for the homeowner and utility segments are critical to keep track of what is 
known and unknown for each portion of the SL. There can also be a separate column for information 
regarding goosenecks, where applicable. Labeling should be consistent across the dataset and specify the 
pipe material (e.g., Copper, Lead, Galvanized, Brass, Plastic, Unknown, etc.).  

An important planning step in setting up this database, or any database, is to make sure that it is designed 
to integrate any data points that are needed or desired. This level of detail is not only important for utility 
planning, but may be necessary for regulatory compliance. The proposed Lead and Copper Rule Revisions 
provides the following definition of an LSL: 

“Lead service line means a service line made of lead, which connects the water main to the building inlet. A 
lead service line may be owned by the water system, owned by the property owner, or both. For the 
purposes of this subpart, a galvanized service line is considered a lead service line if it ever was or is currently 
downstream of any lead service line or service line of unknown material. If the only lead piping serving the 
home or building is a lead gooseneck, pigtail, or connector, and it is not a galvanized service line that is 
considered an LSL the service line is not a lead service line.” 

Having a database or spreadsheet with intelligible data on each SL is a crucial baseline for establishing an 
LSL inventory no matter what level of analysis will ultimately be performed. Some utilities already have 
data management systems that do this; those that do not can generate spreadsheets with the 
information they have. 

In some cases, utilities will have old physical records (e.g., notecards or maps) that have not been 
digitized. These can be an important piece of data in trying to predict or identify SL material and therefore 
must be digitized to be factored into any analysis. Digitizing paper records is a best practice for utility data 
management, whether it be for SL inventories or other records. New technologies, such as optical 
character readers, can digitize these old records, transforming images into spreadsheets. The outputs of 
these processes integrate directly into a utility’s data management system. 

In addition to being in a single spreadsheet or database, it is important that the data be consistent and 
able to be understood by current and future utility employees, in addition to external entities (e.g., 
regulators, consultants, or construction contractors). It must be clear what each of the columns refers to 
and what the labels in each column refer to. Data analyses often include a “data dictionary” or metadata 
explanation, which is used to define these column headers. Articulating what each of the columns means 
allows those using the spreadsheet across the utility and those using it at different times to be able to 
understand and replicate the analysis conducted. Defining the columns also ensures that each point of 
service is being assessed with the same criteria. For consistency, it is also important that utilities not 
simply “overwrite” data when work is completed, to ensure that a history of the record is maintained. 
Keeping a record of the pipe material and whether they were visually confirmed or from a historic record 
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is helpful for any predictive analysis, as well as for tracking and communicating LSL replacement progress. 
This allows utilities to indicate to customers what pipes were made out of and when they did 
maintenance at an address, and also the assumed materials for pipes that have not been replaced yet.  

Organizing data in a way that it can be searched, sorted or modeled is a necessary foundation to any 
analysis. Setting this up in a comprehensive way at the outset is important to making sure it is usable. 

From a water administrator perspective, it can be helpful to include this principle in information regarding 
LSL replacement trainings, templates, and policies that administrators might develop. Better organized 
data makes it much easier for regulators to do their work, and for utilities to comply with regulatory 
needs.  

Under the proposed Lead and Copper Rule Revisions, water systems will have to submit an inventory of 
LSLs and SLs of unknown material to their state primacy agency and will then annually have to submit an 
updated inventory that reflects LSLs replaced and SLs of unknown material that have been evaluated. The 
proposed rule requires the states to maintain a record of all public water system LSL inventories and the 
annual updates. This information is necessary for the State to calculate its goal and mandatory LSLR rates 
and is a way to verify correct tap sample site selection tiering. The proposed rule also states that primacy 
agencies report the current number of LSLs at every water system to EPA. Additionally, the proposed rule 
includes, as a requirement for primacy, that “States would be required to provide a description of 
acceptable methods for verifying service line material under this proposal. Verification methods could 
include consultation of existing records or the physical examination of the service line.” 

Attention water administrators: 
Good data management is a crucial way to 

assess system progress and track regulatory 
compliance. Encouraging utilities to set up 

their LSL inventories in clear, accessible ways 
will improve efficiency and efficacy. Offering 
workshops and guidance on best practices in 
data management for utilities will help both 

utilities and administrators. 

Attention water utilities: 
Creating a data dictionary that clearly defines 

each of the columns in a dataset is an 
important step for any predictive model, 

including an SL materials dataset. It is 
important to include all data associated with 
an address in a data management system. It 

should be clear that each row should 
correspond to a service point. 

Lessons from Flint: 
At the beginning of the Flint pipe replacement project, the city had very few records of SL 

replacements, and all of the historical records were on index cards. The researchers digitized all of the 
records, which revealed the historic SL information records. Although these were not always accurate, 
the patterns in these records (and how accurate or inaccurate certain areas were) proved to be among 

the most useful pieces of data in the predictive model. 

https://www.regulations.gov/document?D=EPA-HQ-OW-2017-0300-0001
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Figure 1: Digitization of Historical Records in Flint 

The above image is an excerpt of a hard copy map in Flint. Records such as this were digitized by University of Michigan 
researchers using Optical Character Recognition technology. The digitization of records is crucial to incorporating this historical 

information into analyses. 

Table 1: Excerpt from Flint Dataset Showing Historical and Verified Service Line Records 

Verification Details Location Details Historical Details

Verified 
Public 
Service 
Line 
Material 

Verified 
Private 
Service 
Line 
Material 

Date 
Verified 

Method Contractor Parcel ID Address 

Historical 
Public 
Service 
Line 
Material

Historical 
Private 
Service Line 
Material

Date of 
Historical 
Records 

Year 
Built

COPPER COPPER 12/6/18 Excavation Firm 1 4489186533 60 KALAMAZOO AVE COPPER COPPER 12/01/56 1951 

GALVAN- 

IZED 
LEAD 10/25/17 Excavation Firm 3 5006830967 34 OAK ST 

GALVAN -

IZED 
COPPER 1935 

GALVAN- 

IZED 
LEAD 6/20/18 Excavation Firm 2 9362055119 31 CATHERINE AVE 

UN- 

KNOWN 
COPPER 1927 

1838914087 11 W MAIN ST COPPER COPPER 1952 

COPPER COPPER 11/13/18 Excavation Firm 2 2870336116 31 WILSON AVE COPPER COPPER 03/15/86 1939

LEAD 
GALVAN- 

IZED 
5/25/18 Hydrovac Firm 1 6187958482 13 E GROVER AVE 

GALVAN -

IZED 
COPPER 01/11/52 1871 

COPPER LEAD 11/28/16 Excavation Firm 3 5228472757 26 LAWN DR Unknown COPPER 06/15/29 1926 

3172003336 92 CLIFTON AVE COPPER COPPER 1955 

The above table is an example of clean data management and organization (Addresses and Parcel IDs have been modified for 
privacy). Each SL has its own row and each column has a clearly defined title. Note that all of these addresses had the private SL 

as “copper” in historical records, yet three were verified as lead and one as galvanized. Blank cells indicate that there was no 
information available or no inspection yet conducted. 
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Principle 2: Not accepting all historical records as truth 

There are many potential sources of data about SL information, and the types and accuracy of SL data will 
vary between water systems. Existing data about SL materials comes from different sources (e.g., water 
main repairs, water meter replacement programs, old construction records) and the accuracy and 
reliability of these records varies by record type and location. Experience in Flint and other cities is that 
historical records can be misleading (See Table 2 for a matrix that shows the patterns between the 
historical records and verified materials in Flint). Replacements may have been made over time without 
proper record keeping or records simply may be incomplete or incorrect. It is therefore crucial to 
establish how correct a water system’s historical records are. Out of caution, it is important for water 
systems that historical labels not be considered as truth.  

Many water systems will not know which types of records are correct and which are not. It is important to 
establish an understanding of how accurate those records are, while also noting that some types of 
records are going to be more accurate than others. In cases where there are recent or high confidence 
records indicating SL material, such as an SL whose material was confirmed as part of road construction in 
2014, those types of records might be considered accurate. In other cases, where workslip index cards for 
buildings built in the 1950s-60s say “copper-?” water systems may regard these records as less reliable. 
The available and relevant documentation are often 
unique to each community based on the historical 
development patterns of its water distribution 
system. The process of learning just how accurate 
(or otherwise) a system’s records are is a powerfully 
informative piece of this data-driven approach. 

As outlined in Principle 1, historical records can be 
informative and should be included in the LSL 
inventory process. They should be preserved and 
not overwritten when replacements are made, as 
past existence of lead versus copper can be 
important data for SL predictions or future analyses. 
For example, if two SL records for the same location, 
from different points in time, are found, they should 
both be captured and present in the database to 
ensure a full history.  

A clear way to understand the accuracy of historical 
records and to indicate that the water utility 
acknowledges the records’ imperfections would be 
to report a “Historical Records Materials Confusion 
Matrix” (see the Table 2 below for an example). This 
is a table that simply counts the number of times 
historical material records say, for example, 
“copper,” but the verified SL shows it is actually lead 
(or how often does the historical record say “galvanized,” and the actual verified SL is copper). The 
percentage of times historical records aren’t accurate (or are just incomplete), could all be summarized 
concisely in a single table for the utility and the state regulators. 

Attention water administrators: 
This level of detail is not specifically called out in 

the proposed rule but could be included in 
guidance and training as a tactic for developing 

LSL inventories. A state may include it in a 
statewide template. When water utilities submit 
their LSL inventories, asking them to document 

the assumptions made in creating their 
inventories allows for increased accountability 
and transparency in their process. Having each 

utility submit using the same statewide or 
nationwide standard spreadsheet format 

electronically also facilitates future analyses like 
estimating overall scope and budgets. Utilities 

could submit a summary of the reliability of 
their historical records using a Historical 

Records Materials Confusion Matrix. 

Attention water utilities: 
Historical records are important to maintain and 

can be an informative input into a predictive 
model, but treating them as the truth can lead 

to suboptimal decisions. Moreover, moving 
forward, utilities should develop processes to 

track SL materials in their daily operations. 
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Lessons from Flint: 
Our team’s experience in working in Flint and other cities is that historical records can be misleading. 

Table 2 below shows the results from the first 5,154 homes in Flint’s SL replacement program (the sum 
of the total on the far right column in Table 2). It indicates the verified material of SLs in Flint based on 

historical records. The left column includes the different material labels that were found in the 
historical records. Each of the columns across the top refers to the materials that were found upon 

inspection. For example, when the historical records indicated “Copper,” the replacement crews found 
a “Copper-Copper” connection 75% of the them (labeled A in Table 2). This means that historical 

copper labels turned out to have lead in some portion of the SL 25% of the time. Alternatively, 29% of 
the time that a historic record indicated “Lead,” the SL was “Copper-Copper” (labeled B in Table 2).  

Table 2: Confusion Matrix from Flint 

Verified SL Materials (Public-side Material - Private-side Material) 

Historical 
records 

Copper- Copper 
Copper- 

Galvanized 
Lead-Copper Lead- Galvanized Lead- Lead 

Other Safe 
Materials (e.g., 

plastic) 

Totals for historical 
records by label 

Copper 

1115 10 258 84 13 9 1489 

75% (A) 1% 17% 6% 1% 1% 100% 

Copper/ 
Lead 

109 20 816 91 15 25 1076 

10% 2% 76% 8% 1% 2% 100% 

Galv/ Other 

113 18 565 1286 81 31 2094 

5% 1% 27% 61% 4% 1% 100% 

Lead 

24 2 29 14 12 3 84 

29% (B) 2% 35% 17% 14% 4% 100% 

Unknown 

152 18 535 1169 118 42 2034 

7% 1% 26% 57% 6% 2% 100% 

The above table shows the results from the first 5,154 homes in Flint that had their SL inspected/replaced as part of the 
replacement program. It indicates what the historical records said about each SL material (rows) and what was identified through 

physical inspection (columns). In the columns, the data is presented as “public side material - private side material” for the SL. 
The “Lesson from Flint” box above highlights how this kind of confusion matrix can be used. 
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Principle 3: Conducting a representative randomized sample of “unknown” SLs 

Generating an estimate of the total number of LSLs in a system or the material at any given address will 
use information from previously verified SLs to estimate the materials at SLs of unknown material. The 
accepted best practice in statistics to be able to make these kinds of estimates is gathering verified SL 
data at a random set of homes where the SL material is unknown. Statistically, only such a representative 
set of verified service points will truly reflect the whole system. 

The representative randomized sample is critical for understanding the entire system’s likely materials, 
which is especially useful for setting and requesting budgets. Combining the results of this inspection set 
with the characteristics of those addresses (e.g., age of home, neighborhood, water testing, etc.) allows a 
water system to calculate the probability of finding an LSL at other SLs with unknown materials. This is the 
definitive way of estimating or predicting the number of SLs with lead and any other type of materials of 
interest, as well as for understanding which areas are more likely to have LSLs. 

As opposed to the representative set described above, a water system using a non-representative set of 
verified SLs may estimate that there are substantially fewer (or more) LSLs than there really are. The non-
representative data comes about in many ways, such as only verifying SL materials where water mains 
have recently broken, where other road work has happened, or where new construction has just 
occurred. Since the proportion of LSLs found at these service points may differ from the remaining not-
yet-verified service points with unknown materials, this data can be misleading. Using a non-
representative set can skew the numbers and is not the best approach to estimate SL materials at any 
scale (i.e., across the whole system, area-by-area level within the system, or home-by-home). The non-
representative data is still informative and will be used, but should not be used to extrapolate across the 
entire system. 

A representative randomized set of SLs is one in which each SL in the water system that is categorized as 
“unknown” shall have an equal chance of being selected to be physically verified. Therefore, the overall 
characteristics of the representative set would have similar characteristics to other homes with unknown 
SL material (e.g., age of home, tax value, etc.). For example, if 30% of SLs of unknown material connect to 
homes built before 1940, then approximately 30% of the homes in the representative random set would 
be built before 1940. 

For each SL in the representative set, the materials of all SL portions should be verified via physical 
inspection (i.e., all segments of the SL and where the SL enters the home). In water systems where 
goosenecks or connectors have been used, verifying the material at the connector would also be 
necessary to characterize the full SL material. The resulting dataset of materials will reflect the entire 
water system. The proportion of LSLs in the sample should be, with high probability, within the margin of 
error of the true proportion of LSLs in the population. A sample size calculator can be used to calculate 
that number. 

The graph below shows the output of a sample size calculator for the minimum required number of 
inspections based on the number of total “unknown” SLs in the water system.1 Note that this is a 
statistical calculation to specifically assess the total number of LSLs in a system, which -- if using a 
randomized representative sample -- can be done with a relatively small number of inspections even for 

1 The sample size is based on having an estimate with a 5% margin of error and a 95% confidence interval for the proportion of 
LSLs within the population of SLs of unknown material. 

https://www.surveysystem.com/sscalc.htm
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larger systems. For water systems with more than 1,000 “unknown” SLs, the total sample size would not 
exceed 400 inspections.2 For systems with fewer than 1,000 “unknown” SLs, the minimum required 
number of inspections may be more difficult to achieve, but asking for a certain percentage of their 
system to be verified could be an alternative (e.g., 20% of SLs for systems with fewer than 1,000 
“unknown” SLs). Estimating the distribution of SLs across an area requires a slightly different calculation, 
but is still based on the principles of representativeness described above. 

Figure 2: Modeling Showing the Necessary Number of Randomized Inspections 
Based on Size of the System 

This graph shows the difference between the number of inspections based on a sample size calculator versus a flat 20 percent of 
the system. The appropriate proportion of SLs that need to be inspected for a statistically valid estimate of the number of LSLs 
flattens out once the system size is larger than about 1,500 SLs of unknown material. It might be challenging for smaller water 

systems to inspect at the recommended amount, but inspecting at a percentage of the SLs of unknown material (e.g., 20 percent) 
could provide valuable data to drive decision-making. 

Estimating the number of LSLs through a representative set like the one described in this section is a 
crucial tool in planning replacement programs, especially for setting and requesting budgets. Such an 
understanding is also best for communicating to the public because it is easy to communicate that every 
SL of unknown material had an equal chance of being chosen for the sample inspections rather than 
inspections being construed as some sort of area-specific bias. Further, any model predictions of 
likelihood of lead are most accurate and reliable when they are based on data that come from a 
representative randomized inspection of a set of SLs. 

Attention water administrators: 
As water utilities request funding to replace 

their LSLs, the results of a representative 
sample can help develop accurate budgets for 

efficient replacement programs. 

Attention water utilities: 
Verified materials of a representative random 
sample of previously “unknown” SLs provide 
an accurate estimate of the concentration of 

LSLs — and is an essential input to more 
advanced modeling. 

2 Water systems seeking to use this process to estimate the distribution of LSLs between and across neighborhoods would use a 
modified sample size calculator that would take into account the water system’s geography and predicted proportion of lead. 
This is called a “multi-level sample size.” 
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Lessons from Flint: 
Initially, Flint’s historical records suggested 10-20 percent of the city’s SLs contained lead. But after a 
representative set of inspections at 231 addresses, the resulting statistical analysis indicated that 52 
percent of all parcels had lead in the inventory.3 After over 25,000 excavations were completed, the 

estimated percentage of all Flint parcels with an LSL is now 51 percent. When narrowed down to 
include only active water accounts, a simulated representative sample estimates that 38.7 percent of 

active accounts would have an LSL. The SL replacement program has found LSLs at 37.2 percent of 
active water accounts. The estimates from the representative sample allowed the city to plan for, and 

request, the appropriate funding to remediate the problem. 

Principle 4: Transparency 

Whether a water system is using a statistical model to predict SL material or another approach, it is 
important that water utilities be transparent about their methods and results. Transparency about 
methods is important for communication with regulators and customers. Considering the public health 
and asset decisions that these inventories could support, being upfront about the steps used to develop a 
prediction is important. This also aligns with best practices for statistics and research, where 
organizations and researchers communicate their methods before they describe their results.  

Public communication  
From a public communication perspective, predictive modeling enables greater transparency by 
communicating the relative likelihood of having an LSL. Instead of categorizing pipes as just “known lead,” 
“known non-lead,” and “unknown,” the use of a predictive model allows utilities to characterize the 
likelihood of any SL containing lead. The information about the likelihood can be communicated in a 
range of ways based on the needs of the utility, local authorities, or residents. This could take the form of 
a category based on a range of probabilities (e.g., “Likely LSL” as anything over 50%). The visual 
communication of this information is also important as it should be presented in an easy-to-use mapping 
format for the public. This kind of information can be included on maps as ways to foster trust and 
effectively communicate public health information.  

This can reduce the potential panic that could occur when someone is told the material at their address is 
“unknown.” By communicating a likelihood of lead based on the statistical methods addressed above, 
residents will be able to get a sense for their relative lead risk, along with information about how to take 
action. Some states already have enhanced transparency requirements: Ohio requires that each system 
submit a map of SLs and buildings likely to contain lead to the state Environmental Protection Agency;4 
Michigan requires each system to submit a Distribution System Materials Inventory;5 Illinois and 
Wisconsin publish publicly accessible annual reporting data by their water systems; California requires 
community water systems to annually report SL inventory information and include a replacement 

3 Letter to DNR Creagh from City General McDaniel dated November 1, 2016 re: estimated number of service lines needing 
replacement. <https://www.michigan.gov/documents/flintwater/Letter_to_DNR_Creagh_from_Flint_McDaniel_ 
dated_110116_545761_7.pdf> 
4 Ohio EPA, “Lead and Copper in Public Water Systems,” https://epa.ohio.gov/ddagw/pws/leadandcopper#185385289-lead-
service-lines-and-mapping 
EDF, “State efforts to support LSL replacement,” https://www.edf.org/health/state-efforts-support-lsl-replacement#ohio  
5 Michigan EGLE, “Michigan Service Line Materials Estimates Preliminary Distribution System Materials Inventories,” 
https://www.michigan.gov/documents/egle/egle-dwehd-PDSMISummaryData_682673_7.pdf 

https://www.cityofflint.com/gettheleadout/
https://www.cityofflint.com/gettheleadout/
https://www.michigan.gov/documents/flintwater/Letter_to_DNR_Creagh_from_Flint_McDaniel_dated_110116_545761_7.pdf
https://www.michigan.gov/documents/flintwater/Letter_to_DNR_Creagh_from_Flint_McDaniel_dated_110116_545761_7.pdf
https://epa.ohio.gov/ddagw/pws/leadandcopper#185385289-lead-service-lines-and-mapping
https://epa.ohio.gov/ddagw/pws/leadandcopper#185385289-lead-service-lines-and-mapping
https://www.edf.org/health/state-efforts-support-lsl-replacement#ohio
https://www.michigan.gov/documents/egle/egle-dwehd-PDSMISummaryData_682673_7.pdf
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schedule for any SL that contains lead or is categorized as “unknown”.6 Public knowledge of the material 
of residents’ own SL materials and any health-protective actions needed are necessary for the success of 
SL inventory and replacement programs. The Lead Service Line Replacement Collaborative has done a lot 
of work around communication of LSLs, and they have many examples from communities across the 
country. 

Figure 3: The Flint Service Line Map 

The Flint Service Line Map is an interactive visual representation of the LSL replacement progress in Flint, Michigan. It is address-
searchable and shows if/when an SL has been replaced as well as the known or estimated SL material. Figure 4 shows what a 

close-up view of the address-specific information provided. 

Figure 4: A Close-Up Example of the Flint Service Line Map 

This example shows the parcel-specific information provided by the Flint Service Line Map when a user clicks on or searches for a 
certain address. The Map also provides additional information regarding lead exposure risk and mitigation techniques. 

6 California Water Boards, “Lead Service Line Inventory Requirement for Public Water Systems,” 
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/lead_service_line_inventory_pws.html 

https://www.lslr-collaborative.org/communicating-about-lsls.html
https://www.flintpipemap.org/
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/lead_service_line_inventory_pws.html
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Reproducibility  
From a regulatory perspective, it is important that water systems communicate the method that they 
used to calculate their predictions. Utilities can document and publicly disclose methods, assumptions, 
and data so that others can replicate the analysis and see how the results were obtained, creating 
opportunities for critical evaluation of the calculations, as well as disseminating methods and lessons 
learned. This level of transparency is important for regulators and public accountability about how water 
systems made determinations for their inventories. 

Per the proposed Lead and Copper Rule Revisions, SLs listed as “unknown” in the initial inventory or the 
updated inventory must be counted as LSLs for purposes of calculating LSL replacement rates and for 
issuing targeted public education to consumers with an LSL or SL of unknown material. What is defined as 
an LSL and an unknown for inventories submitted to regulators is a policy decision with enormous 
potential impacts since replacement rates are based on the number of lead and “unknown” SLs. More 
details may be included in the final rule; if not, this will have to be solved through EPA guidance or at the 
state level. A statistical model does not replace the need for physical verifications, but can be used to 
inform SL inventory and replacement programs.  

Attention water administrators: 
An administrator could encourage or require the utility to 

submit a Public Communication and Community Engagement 
Plan to demonstrate their transparency. Possible criteria for 

an adequate plan could include a website featuring a map with 
SL inventory details for each address and a downloadable 

spreadsheet of underlying data. Another criteria could deal 
with summaries of the program, including overall counts of 

each type of SL material based on the inventory and an 
updating figure or table showing replacement progress over 
time. Administrators can integrate best practices in public 
health communication to better communicate uncertainty 

related to SL material. The results of the predictive model can 
support that communication. From a reproducibility 

perspective, the utility should be able to provide to the 
administrator (and potentially make publicly available online) 
the data and logic used to generate the analyses yielding the 

inventory, in a way that is clear and usable to other users. 

Attention water utilities: 
Communicating the SL 

inventory and the progress of 
replacements to the public is 
essential in maintaining trust 

and confidence of the 
community. But deeper 

engagement with the 
community around those issues 

will require continued 
transparency. Writing 

reproducible statistical analyses 
for SL inventories is important 

for future use and for the 
regulator and public to trust the 

inventory.  

Lessons from Flint: 
The researchers detailed their methods in reports to regulators and also published their work in peer-
reviewed journals to ensure reproducibility and transparency. As the city of Flint worked to complete 

its pipe replacement program in 2020, BlueConduit collaborated with NRDC to release the Flint Service 
Line Map, an interactive tool that allows residents, policy makers, and advocacy groups to examine 

residential SL materials and predictions in Flint (see Figures 3 and 4 above). This map aims to empower 
residents with information about the status of the pipe replacement project at their address, what they 

can do to get their line confirmed and/or replaced, and steps they can take to reduce lead exposure.  

https://www.flintpipemap.org/
https://www.flintpipemap.org/
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Principle 5: Hold-out sample accuracy 

When using a statistical model, it is important to continually evaluate model performance at every stage 
of model development and implementation. This is done through the use of a hold-out sample. A hold-
out sample refers to withholding a random portion of a data set from an initial model and then using the 
withheld data to assess the statistical model’s performance. This is a very common and important 
practice in statistical modeling and machine learning. It creates a high bar to measure a model’s 
performance and provides evidence that the model’s output could be trusted and used for decision-
making. This principle can be applied with data from field work and in the building of the model. 

Evaluating a model with true hold-out data from the field can be done simply by utilities. A utility would 
be able to make the following statement (with evidence): “As of May 31, 2020 based on the predictive 
model, we predicted about 65% of targeted SLs contained lead in some portion. And by August 31, 2020, 
after three months of inspections and replacements, we found 67% had lead.” This would be evidence of 
accurate hold-out performance since the prediction closely matched what was then found in the field.  

In addition to showing the performance using true hold-out data in the field, it is also best practice to use 
existing data as hold-out data while building the predictive model. Before a model is used to inform 
decisions, that model could be checked repeatedly by taking a subset of the existing data to be held out 
from the building of the model in order to use that data to see how well the model performs. This could 
mean that 25% of a dataset is not used in the construction of the model and using that subset to evaluate 
a model that is built on the remaining 75% of the data. Utilities could perform such checks of hold-out 
sample accuracy for different assumptions going into a model or for different predictive model 
techniques. 

On such a hold-out sample, a utility could also show that its predictions are credible and well-calibrated. 
Demonstrating this involves the following steps: find all SLs that were predicted to have approximately 
90% of lead by the model, and then for those SLs, calculate the percentage of them that truly did have 
lead. The calculated percentage from a well-calibrated model will be close to 90%. 

Aside from making sure that model probabilities are well-calibrated, it is important to define the accuracy 
measures used to evaluate and monitor model performance. The key metric to be used for in-the-field 
true hold-out evaluation is “Hit Rate,” the number of LSLs that were identified divided by the number of 
attempted replacements regardless of what was discovered. Hit rate can be computed for an entire 
region or broken down into a specific geography or time. It can also apply to any replacement project, 
whether or not it uses a predictive model.  

Appendix 1 contains an in-depth discussion of different methods of analyzing model performance, 
including metrics to use when the presence of LSLs is extremely high (>90%) or extremely low (<10%) 
where hit rate is not the ideal metric.  
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Attention water administrators: 
As utilities begin to rely more on predictive methods, they 
should be held to the standards typically used to evaluate 

those models, namely hold-out accuracy. Utilities using 
models could be required to submit predictions for all 

addresses with unknown SL materials on a particular date 
before beginning work in the field on those addresses. And 

then at a regular reporting interval (e.g., annually), they 
could be required to compare what they found to their 
initial predictions. Additionally, more technical reports 

could demonstrate hold-out accuracy as well. 

Attention water utilities: 
When using predictive models, 

the best way to ensure that they 
are working best for you -- and to 
convince others to trust them -- is 

to demonstrate accuracy and 
other performance measures on 
hold-out data of SLs not used to 

estimate the model. 

Lessons from Flint: 
The researchers provided extensive evidence that the predictive models were accurate and well 

calibrated by using hold-out data when creating their models and evaluating the model’s performance 
in the field. They used hold-out accuracy to evaluate which of a set of possible predictive methods were 
most effective at predicting SL materials in Flint. To start they used straightforward statistical modeling 

approaches, such as regression-based models for classifying whether an SL had lead. While those 
methods yielded outputs that were easier to interpret, the accuracy on hold-out data was consistently 

poor. The use of machine learning methods proved to be more flexible in combining that same 
information into more accurate predictions of SL material. The house-by-house predicted likelihoods 

were calibrated to be close to the true percentage of leads. This was done using existing data collected, 
and then it was performed using true hold-out data from the field. The predictions, once demonstrated 

to be valid, have been used for prioritizing which neighborhoods, blocks, and specific SLs to service 
next. In the field, the researchers’ predictions helped guide the LSL replacement program in 2016-2017. 
Of the 8,833 SLs dug up for replacement during that time, 6,228 contained lead or galvanized material. 

Some months, they achieved a 90% hit rate. 

For a more detailed explanation of the specific data science methods used in Flint, please see this paper, 
which won an award for best applied data science paper at the 2018 KDD, or this paper from the 
Bloomberg Data for Good Exchange. 

Conclusion 

Having an accurate picture of the number and location of LSLs in a water system benefits all steps of the 
LSL inventory process, from budgeting to excavations. Following these guiding principles can help water 
systems plan for and efficiently execute their LSL replacement programs: 

1. Clean data management and organization
2. Not accepting all historical records as truth
3. Conducting a representative randomized sample of service lines
4. Transparency in public outreach and reproducibility
5. Accuracy on held-out sample

https://dl.acm.org/doi/10.1145/3097983.3098078
https://storage.googleapis.com/flint-storage-bucket/d4gx_2019%20(2).pdf
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Using the likelihood of an SL having lead, as predicted by a statistical model, is an important input to LSL 
inventory and replacement decisions, but is not the only criteria. Utilities weigh several factors when 
making these choices, including concerns about equity and logistical constraints. Having a statistically 
robust probability combined with other factors can improve the overall decision-making. LSL inventory 
and replacement projects can last for many years. Applying these principles can also prepare utilities for 
the multiple iterations or phases of these long-term replacement projects. The risk of not applying any or 
all of the previously outlined principles raises the potential of misinformed or biased decision-making, 
leading to potential delays or inefficiencies in mitigating lead exposure. 

Moreover, water administrators can feel more confident in the accountability and transparency of a 
water system’s process when submitting their LSL inventories, as these principles make clear the methods 
and assumptions of the analysis. They can also be used by regulators in training, guidance, and 
rulemaking to encourage water systems to use the most accurate and representative data to inform 
decisions, set budgets, plan strategically, and, most importantly, protect the health of all individuals in the 
system. 

Some of these principles, such as good data management and transparency, could be considered as a 
necessary baseline for any inventory or replacement program, while some of the more complex statistical 
methods can be utilized for higher levels of sophistication and accuracy. Using a data-guided approach 
should be encouraging rather than daunting-- some systems may feel comfortable implementing this 
approach on their own, but there are also myriad organizations and companies ready to implement these 
principles on behalf of water systems across the country to help them more efficiently identify and 
replace LSLs. 

 If you have questions, contact Ian Robinson at ian@blueconduit.com or Wendi Wilkes at wwilkes@asdwa.org 

mailto:ian@blueconduit.com
mailto:wwilkes@asdwa.org
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Appendix 1 

As mentioned above, these predictive models generate probabilities from 0 to 1 of the likelihood of an 
individual SL containing lead. They do not classify SLs as “lead” or “non-lead.” One consequence of this is 
that a model really generates a list of all SLs with unknown material and orders them in terms of 
likelihood of containing lead. What a water system chooses to do with that rank-ordered list of likelihoods 
of lead is a decision in the hands of the water system and not automatically determined by the model 
itself.  

When a predictive model is used to help inform an SL replacement program, hit rate represents the 
combined success rate of both the model and the decision-maker using the model. It also captures the 
efficiency of the LSL replacement efforts, making it easy for a utility to calculate its cost per successful SL 
replacement. 

Since statistical models generate a list of probabilities and the performance metrics require a 
classification, a cut-off must be chosen that divides the SLs into “most likely lead” and “most likely non-
lead” categories. It’s important to underscore that the cut-off determination is only used to evaluate 
model performance and does not attempt to classify any individual SL as “lead” or “non-lead” for 
inventory purposes. 

The standard measures of performance all can be visualized and computed from this 2x2 “confusion 
matrix.”  

Truly lead Truly non-lead 

Most likely label: “lead” (A) (B) 

Most likely label: “non-
lead”  

(C) (D) 

The cutoff used to split between the “most likely” categories is usually the proportion of lead in the 
dataset (e.g. if 30% of SLs are estimates to be lead, anything with a probability above 30% would be 
considered “most likely lead”) 

In the table, (A) is the number of cases where the model predicted the most likely label for an SL to be 
lead, and in fact, that SL is lead. These would be the count of “true positives.” (B) represents the number 
of “false positives” when the model’s label for an SL is lead, but the actual SL material is not lead. Similarly 
for (C), “false negatives,” the model labels the SL non-lead but the verification shows it is actually lead. 
And (D), “true negatives,” the model’s label for the SL is non-lead, and that SL is truly not lead. 

Many different names are used to describe different percentages associated with these four counts, and 
we try to clarify those here. False positive rate is the percent of SLs given the label of lead but were found 
to not have any lead:  

(𝐵)

 (𝐴)  + (𝐵)
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A model with a high false positive rate would have a lower hit rate and an increased average cost of LSL 
replacement to reflect the inefficiency in replacement attempts.  

False negative rate represents the most important health challenge and the case to eliminate entirely in 
the long run because these are LSLs that are potentially being missed or non-prioritized for replacement: 

(𝐶)

 (𝐶)  + (𝐷)

This metric can be useful for model evaluation, but in isolation of the physical reality of the problem, does 
not reflect the nature of the decision-making based on the model over time. In practice, this corresponds 
to the proportion of all SLs in a community that were not targeted for replacement in that phase of the 
work (e.g., month, quarter, year), but, in fact, those SLs do have lead. As the program progresses, some of 
those SLs may be targeted for replacement. But at this time there are too many other SLs with higher 
likelihood of lead prioritized ahead. As discussed above, the use of the probabilities to help set a 
prioritization is distinct from deeming all SLs with low likelihood of lead to necessarily have no lead at all. 

Finally, we note that even these metrics have limitations, especially if the water system has a fairly low (or 
fairly high) proportion of its service area containing LSLs. Some of the above measures of accuracy are not 
as helpful when the problem of finding LSLs resembles finding a “needle in a haystack.” For example, if 
only 1% of all SLs are truly lead, then a simple model that predicts every SL is copper is “99% accurate” 
while not providing anything useful. In such a case, an additional pair of measures calculated from the 
confusion matrix, called “precision” and “recall,” can be applied. 

Precision is equivalent to true positive rate above, reflecting the ability to be correct when giving an SL 
the label of lead. It is expressed it as: 

(𝐴)

 (𝐴)  + (𝐵)

Recall is the model’s ability to find LSLs among all of the true lead SLs in the data, including those in the 
“likely lead” and the “likely non-lead” groups.  

(𝐴)

(𝐴)  + (𝐶)

This is a useful metric because even if only 1% of all SLs are LSLs, it evaluates how many of those true LSLs 
did the model correctly label as lead. Precision and Recall are scores between 0 and 1, with 0 indicating 
poor performance and 1 indicating perfect performance.  

As we mention above, there are many reasons why it can be undesirable to choose a hard cutoff in 
likelihoods to apply it to all SLs. But choosing that cutoff can be avoided with a more advanced approach 
of evaluating the models. Those advanced methods are able to consider all possible cutoff points at once, 
evaluating the entire model-based rank ordering of all SLs. While beyond the scope of this white paper, 
such model evaluation methods are known as the Receiver-Operating-Characteristic Curve (for false 
positives and false negatives) and the Precision-Recall Curves. We leave these to the reader to investigate 
further.  


