Area Wide Optimization Program

Individual Program
Background Information
ALASKA 2021
Name of Agency: Alaska Department of Environmental Conservation--Drinking Water Program

Official Recognition of AWOP

Please provide the AWOP start date and describe any official recognition of AWOP in agency newsletters, web pages, awards programs, annual meetings, etc.

Program Started in 2000 and slowly increased scope until about 2015/2016. At its peak the program had several staff fully trained to conduct CPEs and at least one training CPE per year was scheduled. Status component inspections (SCIs) of the majority of our surface water treatment systems were conducted. Since then, the program activity has significantly decreased due to numerous factors, including staff changes, retirements, and State funding constraints. We are trying to maintain and slowly build up capacity as resources allow.

Official Adoption of AWOP Goals

Please describe when and how AWOP goals were adopted by your agency and communicated to the water systems.

No current AWOP goals have been officially adopted.

National Optimization Goals adopted by your PWSS Program – Check all that apply:

(refer to Attachment I for descriptions of the NOLT optimization goals.)

Water Treatment Plants

Microbial (Turbidity): Raw Water____ Individual Settled____ CFE X__ IFE X__

Post BW w/FTW __ X__ Post BW wo/FTW ____ Disinfection (CT) __ X__

DBPs (TTHM/HAA5): Plant Effluent____ Enhanced Coagulation __ X__ Disinfection __ X__
Chloramine Application: Ammonia Control _____ Dosing (Chlorine & Ammonia) _____

Distribution Systems

Individual Site DBPs _____ Long Term System DBPs _____ Tank Operations _____
Secondary Disinfection, Free Chlorine _____
Secondary Disinfection, Chloramines (monochloramine, Ammonia & Nitrite) _____

Description of Current AWOP Team Members and Responsibilities

Please provide the name, position/title, description of AWOP duties and approximate FTE that each team member spends on AWOP. Also indicate who serves as the AWOP team lead/point of contact.

Example: Nevel O. Meter, District Engineer, PBT trainer, ~ 0.3 FTE

<table>
<thead>
<tr>
<th>NAME:</th>
<th>RESPONSIBLE FOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnny Mendez, P.E.</td>
<td>Informal Program Technical Lead/POC</td>
</tr>
<tr>
<td>Engineer II</td>
<td>Represent AK in Reg. 10 AWOP</td>
</tr>
<tr>
<td>Fairbanks Engineering Coordinator</td>
<td>Participate in inspections (CPE, SCI)</td>
</tr>
</tbody>
</table>

DW Engineers State Wide (11) Technical Assistance

Participate in inspections (CPE, SCI)

Description of Former AWOP Team Members:

Please provide the name of former AWOP team members, and their reason for leaving the team. This information is for historical purposes and also to support networking as AWOP continues to expand.

<table>
<thead>
<tr>
<th>NAME:</th>
<th>REASON for LEAVING the AWOP:</th>
</tr>
</thead>
</table>

For Your Program, Please Provide the Following (if available):

<table>
<thead>
<tr>
<th>Inventory of State-Wide Treatment Facilities</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid rate filtration treatment plants</td>
<td>74</td>
</tr>
<tr>
<td>Utilizing static settling without tubes or plates</td>
<td></td>
</tr>
<tr>
<td>Utilizing static settling with tubes or plates</td>
<td>14</td>
</tr>
<tr>
<td>Utilizing sludge blanket clarification (upflow, pulsator)</td>
<td>1</td>
</tr>
<tr>
<td>Utilizing contact adsorption clarification</td>
<td>2</td>
</tr>
<tr>
<td>Utilizing sludge recirculation (including ballasted clarification)</td>
<td></td>
</tr>
<tr>
<td>Utilizing DAF, or other alternative clarification process</td>
<td></td>
</tr>
<tr>
<td>Utilizing direct/in-line filtration</td>
<td>57</td>
</tr>
<tr>
<td>Utilizing packaged filtration (package plants)</td>
<td></td>
</tr>
<tr>
<td>Slow sand filter plants</td>
<td>2</td>
</tr>
<tr>
<td>Diatomaceous earth filter plants</td>
<td>1</td>
</tr>
<tr>
<td>Membrane treatment plants</td>
<td>28</td>
</tr>
<tr>
<td>Bag or cartridge filtration plants</td>
<td>84</td>
</tr>
<tr>
<td>Primary disinfectant</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>189</td>
</tr>
<tr>
<td>Chloramines</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>2</td>
</tr>
<tr>
<td>UV</td>
<td>14</td>
</tr>
<tr>
<td>Secondary disinfectant</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>16</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>Chloramines</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Limited to surface water treatment plants (includes surface, GUDI, blended sources).
2. All surface water treatment plants, except cartridge, membrane and slow sand.
3. When a plant utilizes multiple treatment processes or configurations identified below, please include them all in this inventory, e.g., a package plant that utilizes a CAC will be included as a rapid rate plant using CAC and packaged filtration.

The numbers provided above are estimates, based on our limited, but improving, tracking

AK considers package plants conventional, and pressure sand filters as direct filtration

AWOP Vision:

Please describe the vision for your AWOP

To promote adoption of optimization treatment goals in order to improve public health protection. Participate in AWOP activities when possible to maintain proficiency, support staff training and professional growth, so we can provide better technical assistance and technology transfer to our public water systems.

Status Component Implementation:

Please describe status component activities that are implemented in your agency, e.g., (are water systems ranked according to public health risk and how is this information used; how is water system data integrity ensured):

Currently focusing on improving and maintaining inventory of surface water treatment systems as they are modified or newly constructed. Although COVID-19 has hampered travel for the past year and a half.

Targeted Performance Improvement (TPI) Implementation:

Please list all activities that are implemented as TPI activities in your state, e.g., CPEs, PBT, Enhanced Sanitary Surveys, technical assistance, other):

Covid-19 has limited travel and we have focused on Technical assistance that can be delivered via long-distance.
AWOP Maintenance Component Implementation:

Integrate

Please check the following areas where AWOP has been integrated into the PWSS Program:

- Plan Reviews __X__
- Permitting __X__
- Capacity Development_____
- Operator Training_____

- Technical Assistance __X__
- DWSRF Prioritization_____
- Enforcement_____
- Sanitary Surveys_____

Other(identify)__

Enhance

Please describe any AWOP enhancements that have been implemented in your program. One example could include modifying status component criteria.

Have begun promoting optimization goals for new surface water membrane treatment plants. Have also promoted reporting of disinfection CT by providing tailored spreadsheets to operators so they can more easily calculate daily CT in their Monthly Operator Reports.

Sustain

Please describe any activities that you implement to sustain your agency’s AWOP. Some examples could include efforts to promote and incentivize AWOP (e.g., publish regular newsletter, awards program, AWOP participation = higher ranking for grant/loan funding, etc.).

- Continue to participate in Region 10 AWOP meetings/workshops as time/resources allow.
- Look into options/opportunities for training up engineering staff in conducting CPEs.

Lessons Learned:

Please list “lessons learned” that you feel would be helpful to other programs, e.g., how to build and maintain internal support, how to integrate AWOP into your PWSS program, etc). If you are new to AWOP, please list a question or concern you’d like to know more about.

Our knowledge of systems, increases each time we can perform a status component inspection. Our staff have learned the importance and need to improve/promote data quality in monitoring data provided by water systems. Improving our knowledge of the operational status of systems can help us
in the future to target our efforts at technical assistance based on, for instance, PWSs that are ready for optimization tools, and systems that may need significant help just meet minimum regulatory requirements.

Area Wide Optimization Program

Association of State Drinking Water Administrators
Individual Program
Background Information
2021
Name of Agency:
Drinking Water Services is in the Center for Health Protection of the Public Health Division within the Oregon Health Authority.

Official Recognition of AWOP
Please provide the AWOP start date and describe any official recognition of AWOP in agency newsletters, web pages, awards programs, annual meetings, etc.

Oregon's program started in 2003. AWOP activities are included as part of our Capacity Development Work Plan and are reported on in the Annual State Capacity Development Program Implementation Report to EPA R10 each year.

AWOP staff are routinely engaged to develop enhancement to primacy program implementation activities and operator training in order to promote optimization as a tool to ensure on-going compliance. There is a website that addresses optimization at www.healthoregon.org/swt.

Official Adoption of AWOP Goals
Please describe when and how AWOP goals were adopted by your agency and communicated to the water systems.

AWOP goals were adopted in 2003 and communicated via direct mailings, conference presentations, and trainings provided by DWS Staff. The goals are also communicated during water system surveys, which include the following questions concerning turbidity monitoring:
National Optimization Goals adopted by your PWSS Program – Check all that apply:

(refer to Attachment I for descriptions of the NOLT optimization goals.)

<table>
<thead>
<tr>
<th>Conventional/Direct Treatment Plant Continued:</th>
<th>WTP:</th>
<th>If no, check points</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] [] Is raw water turbidity data collected at least daily?</td>
<td>On-line</td>
<td>3 pts</td>
</tr>
<tr>
<td>[] [] Bench-top</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- [] For 2.5-log plants only: Is settled water turbidity measured at least daily? [] N/A
 - When average annual raw water turbidity is ≤ 10 NTU, is settled water turbidity ≤ 1.0 NTU? [] 5 pts
 - When average annual raw water turbidity is > 10 NTU, is settled water turbidity ≤ 2.0 NTU? [] 2 pts

- [] Are turbidity compliance standards met? (<0.3 NTU 95% of time; all < 1 NTU) [] 10 pts
 - Are filter Optimization goals met? (< 0.10 NTU 95% of time, always < 0.30 NTU) [] CFE [] IFE [] 4 pts
 - Is CFE monitoring location acceptable (prior to any storage)? [] 5 pts

- [] Is each IFE turbidity always below triggers? If no, check box below:
 - Turbidity > 1.0 NTU in 2 consecutive 15-min readings
 - Turbidity > 0.5 NTU in 2 consecutive readings 1st 4 hrs after startup
 - Turbidity > 1.0 NTU in 2 consecutive 15-min readings for 3 months in a row
 - Turbidity > 2.0 NTU in 2 consecutive 15-min readings for 2 months in a row
 - Can chart recorder document turbidity > 1.5 NTU? [] N/A

Water Treatment Plants

Microbial (Turbidity): Raw Water _X_ Individual Settled _X_ CFE ___ XX _IFE____

Post BW w/FTW _X_ Post BW wo/FTW _X_ Disinfection (CT) _X_

DBPs (TTHM/HAA5): Plant Effluent _____ Enhanced Coagulation _____ Disinfection____
Chloramine Application: Ammonia Control _____ Dosing (Chlorine & Ammonia) _____

Distribution Systems

Individual Site DBPs _____ Long Term System DBPs _____ Tank Operations _____
Secondary Disinfection, Free Chlorine _____
Secondary Disinfection, Chloramines (monochloramine, Ammonia & Nitrite) _____

Modifications to the national goals or other optimization goals utilized by your Agency:

Please describe any modified AWOP goals and/or any additional optimization goals adopted by your agency and communicated to the water systems.

There are draft optimization goals and guidelines for slow sand filters on-line at:

Optimization goals for conventional and direct filtration plants are on-line at:

The conventional and direct filtration goals are summarized in the table below:
| SEDIMENTATION
(for Conventional Filtration) | Turbidity | Criteria |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Settled Water</td>
<td>≤ 2.0 NTU, 95% of the time.</td>
<td>If average annual raw water turbidity is > 10 NTU.</td>
</tr>
<tr>
<td></td>
<td>≤ 1.0 NTU, 95% of the time.</td>
<td>If average annual raw water turbidity is ≤ 10 NTU.</td>
</tr>
</tbody>
</table>

| FILTRATION
(for Conventional and Direct Systems)	Turbidity	Criteria
IFE and CFE Filtered Water	• Turbidity ≤ 0.10 NTU, 95% of the time.	
 • Max. turbidity ≤ 0.30 NTU. | Based on maximum values recorded during 4-hour increments (excluding the 15-minute period following backwash). |
| IFE filtered water after backwash | • Turbidity returns to ≤ 0.10 NTU within 15 minutes after backwash.
 • Max. spike ≤ 0.30 NTU.
 • Turbidity at return to service ≤ 0.10 NTU. | Goals apply to both systems with and without filter-to-waste capability. Goals also apply to the backwash recovery period starting immediately after backwash. |

IFE = Individual Filter Effluent; CFE = Combined Filter Effluent
Description of *Current AWOP Team Members and Responsibilities*

Please provide the name, position/title, description of AWOP duties and approximate FTE that each team member spends on AWOP. Also indicate who serves as the AWOP team lead/point of contact.

Example: Nevel O. Meter, District Engineer, PBT trainer, ~ 0.3 FTE

(Note that if you submitted this information in 2019, that information is being provided and if there are no changes, simply indicate “no change” in this section.)

Note changes – Since the 2019 National AWOP Meeting Joe Carlson (Data Management and Compliance Assurance Unit Manager) retired and the position was subsequently filled by Samina Panwhar. James Nusrala has also retired as of July 16, 2021 and his position is currently vacant. Finally, Phebe Howe was hired in October 2020 to take over the role of Capacity Development Coordinator from Debra Lambeth, who remains within DWS, but focused on the State Revolving Loan Fund (SRF) and related Environmental Review responsibilities associated with SRF loans.

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Title</th>
<th>Description of AWOP Duties</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Emme</td>
<td>Drinking Water Services Manager (effective February 6, 2017).</td>
<td>Oversees the entire Drinking Water Services program in support of AWOP activities.</td>
<td></td>
</tr>
<tr>
<td>Tony Fields</td>
<td>Planning Protection and Certification Unit Manager.</td>
<td>Oversees the Capacity Development and Operator Certification programs (among others) in support of AWOP activities.</td>
<td></td>
</tr>
<tr>
<td>Kari Salis</td>
<td>Technical Services Unit – Region 1 Manager.</td>
<td>Oversees the activities field staff in Region 1, the AWOP Coordinator, and the Region 1 Core AWOP Team members in support of AWOP activities.</td>
<td></td>
</tr>
<tr>
<td>Casey Lyon</td>
<td>Technical Services Unit – Region 2 Manager.</td>
<td>Oversees the activities of field staff in Region 2, including the Region 2 Core AWOP Team member in support of AWOP activities.</td>
<td></td>
</tr>
<tr>
<td>Samina Panwhar</td>
<td>Data Management and Compliance Assurance Unit Manager.</td>
<td>Oversees enforcement and compliance functions and the entry and management of data housed in SDWIS/STATE, which is used to develop AWOP program reports and Status Component Scores.</td>
<td></td>
</tr>
<tr>
<td>Phebe Howe (new to this role January 2021)</td>
<td>Natural Resource Specialist 3 Capacity Development Coordinator. Integrates AWOP activities into the Capacity Development Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evan Hofeld (AWOP Coordinator - 0.25 FTE)</td>
<td>Environmental Engineer 3 Develops/Maintains the Status Component, PBT, and other operator training opportunities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacant (AWOP Core Team Member - 0.25 FTE) – (fmly James Nusrala)</td>
<td>Environmental Engineer 3 AWOP Core Team Member – Region 1. Oversees development of Technical On-site Assistance Process, contributes to on-line resources, and participates in AWOP field events and operator trainings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jay MacPherson (AWOP Core Team Member - 0.25 FTE)</td>
<td>Environmental Engineer 3 AWOP Core Team Member – Region 2. Contributes to the Technical On-site Assistance Process and participates in AWOP field events and operator trainings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebecca Templin (AWOP Core Team Member - 0.25 FTE)</td>
<td>Environmental Engineer 3 AWOP Core Team Member – Region 2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contributes to the Technical On-site Assistance Process and participates in AWOP field events and operator trainings.

Description of Former AWOP Team Members:

Please provide the name of former AWOP team members, and their reason for leaving the team. This information is for historical purposes and also to support networking as AWOP continues to expand.

(Note that if you submitted this information in 2019, that information is being provided and if there are no changes, simply indicate “no change” in this section.)

1. Of note is the retirement of Joseph Carlson and James Nusrala since the 2019 National AWOP meeting.

<table>
<thead>
<tr>
<th>NAME:</th>
<th>REASON for LEAVING the AWOP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Nusrala, AWOP Core Team Member</td>
<td>Retired July 16, 2021</td>
</tr>
<tr>
<td>Debra Lambeth</td>
<td>Shifted responsibilities from Capacity Development Coordinator at the end of 2020 to focus on the State Revolving Loan Fund (SRF) and related Environmental Review responsibilities associated with SRF loans</td>
</tr>
<tr>
<td>Joseph Carlson, Data Management and Compliance Assurance Unit Manager</td>
<td>Retired since the 2019 National AWOP meeting.</td>
</tr>
<tr>
<td>Dave Leland, Drinking Water Services Manager</td>
<td>Retired after 34 years in December 2016</td>
</tr>
<tr>
<td>Fred Kalish, AWOP Core Team Member</td>
<td>Retired July 1, 2015</td>
</tr>
<tr>
<td>Casey Lyon, AWOP Core Team Member</td>
<td>Became Region 1 Technical Services Manager in 2014 – he is still involved in AWOP as much as he can.</td>
</tr>
<tr>
<td>Chris Hughes, Unit Manger</td>
<td>Retired in 2011.</td>
</tr>
<tr>
<td>Shane Phelps, AWOP Core Team Member</td>
<td>Left State Employment prior to 2008.</td>
</tr>
<tr>
<td>Brian Rigwood, AWOP Core Team Member</td>
<td>Left State Employment prior to 2008.</td>
</tr>
</tbody>
</table>
2. Inventory of State-wide Treatment Facilities:

<table>
<thead>
<tr>
<th>Inventory of State-Wide Treatment Facilities(^1)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid rate filtration treatment plants(^2,3)</td>
<td>105</td>
</tr>
<tr>
<td>Utilizing static settling without tubes or plates</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing static settling with tubes or plates</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing sludge blanket clarification (upflow, pulsator)</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing contact adsorption clarification</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing sludge recirculation (including ballasted clarification)</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing DAF, or other alternative clarification process</td>
<td>Unknown</td>
</tr>
<tr>
<td>Utilizing direct/in-line filtration</td>
<td>28</td>
</tr>
<tr>
<td>Utilizing packaged filtration (package plants)</td>
<td>Unknown</td>
</tr>
<tr>
<td>Slow sand filter plants</td>
<td>31</td>
</tr>
<tr>
<td>Diatomaceous earth filter plants</td>
<td>1</td>
</tr>
<tr>
<td>Membrane treatment plants</td>
<td>42</td>
</tr>
<tr>
<td>Bag or cartridge filtration plants</td>
<td>52 (includes 1 bag filter)</td>
</tr>
<tr>
<td>Total Number of Filtration Plants (SW or GU sources)</td>
<td>231</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>Primary disinfectant*</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>262**</td>
</tr>
<tr>
<td>Chloramines</td>
<td>0</td>
</tr>
<tr>
<td>Ozone</td>
<td>5</td>
</tr>
<tr>
<td>UV</td>
<td>23</td>
</tr>
<tr>
<td>Secondary disinfectant</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>262</td>
</tr>
<tr>
<td>Chloramines</td>
<td>3</td>
</tr>
</tbody>
</table>

*Disinfection data is a count of disinfection treatment process codes in SDWIS/STATE for SW/GU system (excludes consecutive systems). Some plants may be counted for more than one disinfection process as some plants may have multiple oxidants used for primary disinfection depending upon the target pathogen.

**Includes treatment plants with gas chlorine, sodium hypochlorite, and mixed oxidants.

1 Limited to surface water treatment plants (includes surface, GUDI, blended sources).

2 All surface water treatment plants, except cartridge, membrane and slow sand.

3 When a plant utilizes multiple treatment processes or configurations identified below, please include them all in this inventory, e.g., a package plant that utilizes a CAC will be included as a rapid rate plant using CAC and packaged filtration.
AWOP Vision:

Please describe the vision for your AWOP

The object of Oregon’s Area Wide Optimization Program is to educate water system operators in optimization principles with the goal of improving public health protection. This is accomplished by imparting an understanding of not only the basics of water treatment and the multiple barrier concepts, but also providing the opportunity and incentive to learn and engage in optimizing treatment beyond regulatory standards and using data to monitor performance and identify areas for improvement.

The long-term vision is to have all conventional and direct filtration plants meet the optimization goals.

Status Component Implementation:

Please describe status component activities that are implemented in your agency, e.g., (are water systems ranked according to public health risk and how is this information used; how is water system data integrity ensured):

In general, systems with higher status component scores are prioritized when scheduling on-site assistance activities, however, on-site assistance may also be provided upon request.

Status component scores are determined as follows:

- All data used to develop status component scores is housed in SDWIS/STATE.
- The data housed in SDWIS/STATE includes:
 - Filter type code;
 - Population served;
 - Maximum daily combined filter effluent turbidity data reported by water systems on the monthly operating report (along with compliance turbidity data and CT parameters);
 - Violations;
 - A score entered based on information gathered during water system surveys and treatment plant inspections; and
 - TOC data.
- A Microsoft Access database is used to extract the data, calculate and archive system scores, and generate reports.
- A factor is applied to the data extracted from SDWIS/STATE and the sum of the factors is used to generate the status component scores. These factors are shown in the status component criteria shown on the following page.
Prioritization Criteria for AWOP Status Component - Rev. 5-4-11

Maximum CFE NTU (Past 12 Mo of Data, 1 if Null)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.1</td>
<td>95P NTU 0 - 0.1</td>
</tr>
<tr>
<td>0.1000001 - 0.2</td>
<td>95P NTU 0.1 - 0.2</td>
</tr>
<tr>
<td>0.2000001 - 0.5</td>
<td>95P NTU 0.2 - 0.5</td>
</tr>
<tr>
<td>0.5000001 - 1000000</td>
<td>95P NTU > 0.5</td>
</tr>
</tbody>
</table>

Past 2 Years of Violations (-1 if Null)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 - MCL, AVERAGE</td>
<td>Average MCL</td>
</tr>
<tr>
<td>02 - MCL, AVERAGE (CHLORITE)</td>
<td>Chlorite MCL</td>
</tr>
<tr>
<td>11 - MRDL, NON-ACUTE (CHL. DIOXIDE)</td>
<td>Non-Acute MRDL</td>
</tr>
<tr>
<td>11 - MRDL (CHLORINE/CHLORAMINE)</td>
<td>Chlorine/Chloramine MRDL</td>
</tr>
<tr>
<td>13 - MRDL, ACUTE (CHL DIOXIDE)</td>
<td>Acute MRDL</td>
</tr>
<tr>
<td>21 - MCL (TCR), ACUTE</td>
<td>Acute MCL</td>
</tr>
<tr>
<td>22 - MCL (TCR), MONTHLY</td>
<td>Monthly MCL</td>
</tr>
<tr>
<td>36 - MONITORING, RTN/RPT MAJOR (SWTR-FILTER)</td>
<td>Mon SWTR</td>
</tr>
<tr>
<td>36 - MONITORING, RTN/RPT MINOR (SWTR-FILTER)</td>
<td>Mon SWTR</td>
</tr>
<tr>
<td>39 - MONITORING, ROUTINE (IESWTR/LT1), MINOR</td>
<td>Routine SWTR</td>
</tr>
<tr>
<td>40 - RES DISINFECT CONCENTRATION (SWTR)</td>
<td>Res Concent SWTR</td>
</tr>
<tr>
<td>41 - MONTHLY COMB. FILTER EFFLUENT (SWTR)</td>
<td>Monthly Comb SWTR</td>
</tr>
<tr>
<td>41 - SINGLE COMB. FILTER EFFLUENT (SWTR)</td>
<td>Single Comb SWTR</td>
</tr>
<tr>
<td>43 - SINGLE COMB FLTR EFFLUENT (IESWTR/LT1)</td>
<td>Single Comb SWTR</td>
</tr>
<tr>
<td>44 - MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1)</td>
<td>Monthly Comb SWTR</td>
</tr>
</tbody>
</table>

Population

<table>
<thead>
<tr>
<th>Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 300</td>
<td>0 < Pop < 300</td>
</tr>
<tr>
<td>301 - 1000</td>
<td>300 < Pop < 1,000</td>
</tr>
<tr>
<td>1001 - 5000</td>
<td>1,000 < Pop < 5,000</td>
</tr>
<tr>
<td>5001 - 10000</td>
<td>5,000 < Pop < 10,000</td>
</tr>
<tr>
<td>10001 - 50000</td>
<td>10,000 < Pop < 50,000</td>
</tr>
<tr>
<td>50001 - 100000000</td>
<td>Pop > 50,000</td>
</tr>
</tbody>
</table>

Avg Raw Water TOC (Past 12 Mo of Data, 1 if Null)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 1000</td>
<td>+1 with <35% Avg Removal</td>
</tr>
<tr>
<td>1 - 1,999</td>
<td>+1 with <35% Avg Removal</td>
</tr>
<tr>
<td>0 - 0.999</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Current WTP Visit Frequency (1 if Null)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - MN</td>
<td>6 MO Visit Freq</td>
</tr>
<tr>
<td>1 - YR</td>
<td>1 YR Visit Freq</td>
</tr>
<tr>
<td>3 - YR</td>
<td>3 YR Visit Freq</td>
</tr>
<tr>
<td>5 - YR</td>
<td>5 YR Visit Freq - Outstanding Perf</td>
</tr>
</tbody>
</table>

Summary of Criteria Subtotals

- Combined Effluent Water Turbidity Subtotal: 31
- Monitoring and Reporting Violations Subtotal: 31
- Population Subtotal: 4
- TOC Subtotal: 4
- WTP Visit Frequency Subtotal: 30

Total Score Possible = 100

http://170.104.63.9/violab_vtypes.php
Medium sized systems are weighted more than very large or very small systems, as they are deemed to have somewhat limited technical or managerial capacity, but enough capacity to effectively use information provided by AWOP team members to improve treatment performance and resolve performance limiting factors.
An example of the list of ranked water systems is shown below, with those systems having the highest status component scores appearing at the top of the list:

<table>
<thead>
<tr>
<th>WTP</th>
<th>Total Score</th>
<th>CFE Score (WSP NTU)</th>
<th>Violation Score</th>
<th>TOC Score (CF Only)</th>
<th>Population Score</th>
<th>FILTER TYPE</th>
<th>GIARDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>00239 WTP-A</td>
<td>60</td>
<td>0.31</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>DF</td>
<td>1.6</td>
</tr>
<tr>
<td>00202 WTP-A</td>
<td>70</td>
<td>0.20</td>
<td>31</td>
<td>1</td>
<td>4</td>
<td>OF</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Targeted Performance Improvement (TPI) Implementation:

Please list all activities that are implemented as TPI activities in your state, e.g., CPEs, PBT, Enhanced Sanitary Surveys, technical assistance, other):

Oregon's TPI activities include:

- **Conducting CPEs, on-site technical assistance site visits, and data integrity audits**
- **Offering the following classes at least once each year worth 0.6 CEU each:**
 - Essentials of Surface Water Treatment
 - Slow Sand Filtration
 - Conventional and Direct Filtration
- **Conducting PBT (a total of 32 hours of instruction (3.2 CEU) for operators of conventional and direct filtration plants)**
- Provide outreach and information through conference presentations, direct mailings, and a website (www.healthoregon.org/swt).
- **Completing work on implementing slow sand and membrane filtration optimization goals.**

In general, systems with higher status component scores are prioritized when scheduling on-site assistance activities, however, on-site assistance may also be provided when requested by a water system.

COVID-19 and Wildfires in 2020 have had an adverse impact on these activities and the “Essentials of Surface Water Treatment” class was offered for virtual training (the class was pre-recorded and presented with a live moderator) on only two occasions 2020.
AWOP Maintenance Component Implementation:

Integrate

Please check the following areas where AWOP has been integrated into the PWSS Program:

Plan Reviews____X____ Permitting______ Capacity Development____X____ Operator Training____X____

Technical Assistance____X____ DWSRF Prioritization______ Enforcement____X____ Sanitary Surveys____X____

Other(identify)______________________________

Enhance

Please describe any AWOP enhancements that have been implemented in your program. One example could include modifying status component criteria

The following enhancements/tools have been made since the 2017 National AWOP meeting:
1. Enhancements have been made to the water system survey (sanitary survey) process for membrane filtration and the plan review process was modified to include a calculated LRV using current operating conditions (termed “LRVambient”).

2. Optimization guidance has been developed for treating cyanotoxins. This guidance titled “Optimizing Water Treatment Plants for Cyanotoxin Removal” was completed in May of 2019 and posted, along with USEPA’s Water Treatment Optimization for Cyanotoxins guidance and the CyanoTox spreadsheet, to our website at the following links:

 - Optimizing Toxin Removal - All surface water systems can take steps at their treatment plants to increase the removal efficiency of cyanotoxins.
 - EPA Water Treatment Optimization for Cyanotoxins
 - American Water Works Association CyanoTOX Spreadsheet for Cyanotoxin Removal Rate Calculation

3. In the fall of 2020 and the spring of 2021, optimization guidance was developed for treating waters after a wildfire. This guidance was posted on our website at:

 - Optimizing Filtration After a Wildfire - February 2021
Sustain

Please describe any activities that you implement to sustain your agency’s AWOP. Some examples could include efforts to promote and incentivize AWOP (e.g., publish regular newsletter, awards program, AWOP participation = higher ranking for grant/loan funding, etc.).

The knowledge and experience gained as a result of participation in the Region 10 AWOP group has had a positive impact in sustaining support for AWOP enhancing the following program areas:

Plan Review:

Efforts to optimize conventional, direct, membrane and slow sand filtration systems has led to a better understanding and review of construction plans among plan review staff. AWOP Core Team members have been instrumental in revising plan review forms and procedures as a result of the knowledge and experience gained through participation in AWOP activities.

Capacity Development:

AWOP activities are written into the Capacity Development Work Plan. AWOP Core Team Members have been instrumental in the development of financial and managerial capacity outreach materials.

Operator Training:

Classes and PBT developed and offered by AWOP staff are used by operators to gain CEU’s that go towards their operator certification CEU requirements. Operators are also able to obtain CEU’s by attending conference presentations presented by AWOP staff.

Information learned through AWOP is going to be more routinely disseminated through the Drinking Water Services on-line publication “The Pipeline”. The most recent example of one of these articles is on-line at the link below:

- Establishing SCADA alarm setpoints for optimization and compliance assurance (4/15/21)

Enforcement:

AWOP core team members have recently completed two Comprehensive Performance Evaluations (CPEs) in late 2013 and early 2015, one of which was required under ESWTRLT1 for individual filter effluent turbidity exceedances. The training AWOP staff received as a result of participating in AWOP Region 10 events has prepared Oregon staff to be able to complete these CPE’s in a thorough much more effective manner.
Lessons Learned:

Please list “lessons learned” that you feel would be helpful to other programs, e.g., how to build and maintain internal support, how to integrate AWOP into your PWSS program, etc. If you are new to AWOP, please list a question or concern you’d like to know more about.

The following lessons have been learned in implementing AWOP in Oregon:

1. Obtain clear expectations and performance measures or benchmarks from management;
2. Ensure criteria used for benchmarks or performance measures are relatively easy to track and can be sustained;
3. Ensure the integrity of turbidity and other status component data early on in the process;
4. Involve as many drinking water staff as possible;
5. Include AWOP as a part of all-staff meetings;
6. Integration into Capacity Development Programs helps to sustain funding and management support for AWOP activities.
7. Attending regular regional meetings and participating in multi-state trainings is crucial to keeping on top of new developments and learning innovative ways to implement AWOP activities.

Although implementing these recommendations in Oregon has not been without its challenges, they are important to ensure a more sustainable program that can better serve the overall drinking water program in responding to natural disasters such as wildfires and adapting to pandemic-related budgetary constraints and staffing changes.
Attachment I: Optimization Goals Adopted by the NOLT

<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Applies to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial</td>
<td>Minimum Data Monitoring Goal</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Record maximum daily raw water turbidity.</td>
</tr>
</tbody>
</table>
| **Microbial** | Raw Water Turbidity | Rapid Rate Filtration Plants | — Settled water turbidity ≤ 2 NTU in 95% of readings when the annual average raw turbidity is > 10 NTU. Optimization is based on the daily maximum values recorded from all readings.
— Settled water turbidity ≤ 1 NTU in 95% of readings when the annual average raw turbidity is ≤ 10 NTU. Optimization is based on the daily maximum values recorded from all readings.
— Record individual sedimentation basin effluent turbidity readings at intervals of 4-hours or less if taking grab samples, or 15 minutes or less for continuous monitoring. |
| **Microbial** | Individual Sedimentation Basin Performance and Monitoring Goals | Rapid Rate Filtration Plants | — Combined filter effluent turbidity ≤ 0.10 NTU in 95% of readings. Optimization is based on the daily maximum values recorded from all readings.
— Individual filter effluent turbidity ≤ 0.10 NTU in 95% of readings (excluding 15-minute period following filter backwash). Optimization is based on the daily maximum values recorded from all readings.
— Post backwash individual filter effluent turbidity for filters **without** filter-to-waste capability: Maximum individual filter effluent turbidity following backwash ≤ 0.30 NTU and achieve ≤ 0.10 NTU within 15 minutes.
— Post backwash individual filter effluent turbidity for filters **with** filter-to-waste capability: Minimize individual filter effluent turbidity during filter-to-waste period and record maximum value. Return the filter to service at ≤ 0.10 NTU.
— Record individual and combined filter effluent turbidity readings at intervals of 1-minute or less for continuous monitoring. |
| **Microbial** | Individual and Combined Filter Performance and Monitoring Goals | Rapid Rate Filtration Plants | — Meet CT requirements to achieve inactivation of *Giardia* and viruses plus a system-specific factor of safety.
— Record disinfectant residual, temperature, and pH at maximum daily flow for CT calculations. |
| **Microbial** | Disinfection Performance and Monitoring Goals | Rapid Rate Filtration Plants | — System Specific Targets: Could be a discrete value or range that is based on a running annual average. Recommended goal value/range should be 30% to 50% of long term LRAA goals (e.g., 20-30 ppb for TTHM, 15-20 ppb for HAAS). |
| **Disinfection By-Product** | Enhanced Coagulation Performance and Monitoring Goals | Surface Water and Groundwater Under the Direct Influence of Surface Water Plants | —Collect quarterly TTHM and HAAS samples at the plant effluent and distribution system compliance sites.
—Meet Stage 1 D/DBP Rule TOC removal requirements for enhanced coagulation, which are based on source water alkalinity and TOC levels, or an alternative compliance criterion, as a running annual average (RAA) of the performance ratio (actual TOC removal/required TOC removal) plus a factor of safety of 10% (or performance ratio ≥ 1.1).
—Collect monthly total organic carbon samples for raw and treated water (only applies to parent systems). |
| --- | --- | --- | --- |
| **Disinfection By-Product** | Disinfection Performance and Monitoring Goal | Surface Water and Groundwater Under the Direct Influence of Surface Water Plants | —Meet CT requirements to achieve inactivation of *Giardia* and viruses plus a system-specific factor of safety.
—Record disinfection residual, temperature, and pH at maximum daily flow for CT calculations (only applies to parent systems). |
—Long-Term System Goal: Average of Maximum Locational Running Annual Average TTHM/HAA5 values not to exceed 60/40 ppb (the average of the last 8 quarters cannot exceed 60/40 ppb).
—For systems in compliance with the TTHM and HAA5 MCLs, collect quarterly DBP samples at all compliance locations; for systems not in compliance, collect monthly samples. |
| **Free Chlorine Distribution System** | Disinfection Performance and Monitoring Goals | Parent and Consecutive Water Systems that Utilize Free Chlorine as a Secondary Disinfectant | —Maintain ≥ 0.20 mg/L free chlorine residual at all monitoring sites in the distribution system, at all times.
—Monitoring should be performed at least monthly, but more frequently at critical times (i.e., summer months).
—Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites based on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total). |
| **Plants that Utilize Chloramine** | Disinfection: Ammonia Control Performance and Monitoring Goals | Parent and Consecutive Water Systems that Utilize Chloramine as a | —Maintain a detectable free ammonia residual in the plant effluent ≤ 0.10 mg/L as NH₃-N.
—Monitor free ammonia at least once per day in the plant effluent.
• The monitoring frequency may be adjusted based on the variability observed over an extended period of time. |
Plants that Utilize Chloramine

Operational Guideline
Chlorine and Ammonia Dosing

- **Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant**

 — Maintain a chlorine-to-nitrogen mass ratio between 4.5:1 and 5.0:1 (or chlorine-to-ammonia mass ratio between 3.7:1 and 4.1:1), which should result in a detectable free ammonia in the plant effluent that is ≤ 0.10 mg/L as NH₃-N.

Chloramine Distribution System

Disinfection: Monochloramine and Nitrification-Related Parameters

- **Performance and Monitoring Goals**

 — Maintain ≥ 1.50 mg/L monochloramine residual at all monitoring sites in the distribution system, at all times, to provide a disinfection barrier against both microbial contamination and nitrification prevention.

 — Monitor monochloramine, free ammonia, and nitrite in the distribution system and at the entry points (to establish a baseline).

 - Monochloramine and free ammonia should be monitored at all sample locations.
 - Nitrite should be monitored at sample locations where monochloramine is ≤ 1.50 mg/L; nitrate may also be monitored, to further assess nitrification.
 - Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites based on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total).
 - Monitoring should be done at least monthly, but more frequently at critical times (e.g., summer months).

Distribution System

Operational Guidelines

- **Tank Operations**

 — Maintain an average turnover time < 5 days; or establish and maintain a water turnover rate at each storage facility.
 — Maintain good mixing (i.e., Performance Ratio ≥ 1) at all times; for tanks where the PR cannot be calculated, adequate mixing (i.e., uniform water quality) should be confirmed by alternate means (e.g., tank profiling/water quality sampling).
Area Wide Optimization Program

WASHINGTON
Individual Program

Background Information

2021
Name of Agency: Washington State Dept of Health-Office of Drinking Water

Official Recognition of AWOP

Please provide the AWOP start date and describe any official recognition of AWOP in agency newsletters, web pages, awards programs, annual meetings, etc.

The Covid-19 pandemic of the past 18 months significantly impacted our program. During 2020, and into 2021, multiple ODW staff were reassigned to contribute to DOH’s response, chiefly in case investigation and contact tracing. During this period, our in-person AWOP trainings and meetings were cancelled due to social distancing requirements. We continued outreach to individual systems and are presently working with two of the large-system PBT participants to evaluate jar test modifications and enhancements.

During the period, we started a new semi-monthly water newsletter, focusing on subjects of interest to surface water operators, engineers, and ODW staff. We intend to address, on average, two hot topics (e.g. seasonally relevant) per edition. The first edition, covered SCADA and HAB and contained “interest photos” from a couple of systems. Other new or updated/revised documents on optimization-specific topics, included:

- Adjust Operations for Cold Weather (DOH 331-649) – a fact sheet
- Calculating Chemical Dose-Liquid Alum (DOH 331-650) – a worksheet (revised)
- Dealing with Algal Blooms: Time to Make a Plan (DOH 331-654) - Guidance
- Diatomaceous Earth (DE) Optimization Goals (DOH 331-648) - Guidance
- Filter Backwash (DOH 331-624) – Operational Tips
- Monitoring Surface Water Treatment Processes (DOH 331-620) - Guidance
- Slow Sand Optimization Goals (DOH 331-601) – Guidance (updated)
- Standard Operating Procedures for WTPs (DOH 331-647) - FAQs

Our “X-graph,” updated for the 2020 operating year (see below), was recently published on our website.
We are currently making final preparations for releasing treatment optimization program “TOP” awards to systems which have continuously met the TOP performance criteria goals.

Official Adoption of AWOP Goals

Please describe when and how AWOP goals were adopted by your agency and communicated to the water systems.

Goals were formally adopted in 2003. A letter and laminated poster containing the goals was sent to every rapid rate filter plant. [Treatment Optimization Program (TOP) (wa.gov)](wa.gov)
National Optimization Goals **adopted** by your PWSS Program – Check all that apply:

(refer to Attachment I for descriptions of the NOLT optimization goals.)

Water Treatment Plants

Microbial (Turbidity): Raw Water____ Individual Settled _X_ CFE_X_ IFE__X_

Post BW w/FTW_X_ Post BW wo/FTW_X_ Disinfection (CT) _X_

DBPs (TTHM/HAA5): Plant Effluent____ Enhanced Coagulation____ Disinfection____

Chloramine Application: Ammonia Control____ Dosing (Chlorine & Ammonia) ____

Distribution Systems

Individual Site DBPs ____ Long Term System DBPs____ Tank Operations____

Secondary Disinfection, Free Chlorine ____

Secondary Disinfection, Chloramines (monochloramine, Ammonia & Nitrite) ____

Modifications to the national goals or other optimization goals utilized by your Agency:

Please describe any modified AWOP goals and/or any additional optimization goals adopted by your agency and communicated to the water systems.

We track and analyze *max* daily CFE reported by 100% of our rapid rate surface water systems on their MORs. Data is used to monitor performance, target follow-up, and as basis for our Treatment Optimization Program recognition awards.

Description of Current AWOP Team Members and Responsibilities

Please provide the name, position/title, description of AWOP duties and approximate FTE that each team member spends on AWOP. Also indicate who serves as the AWOP team lead/point of contact.
Example: Nevel O. Meter, District Engineer, PBT trainer, ~0.3 FTE

(Note that if you submitted this information in 2019, that information is being provided and if there are no changes, simply indicate “no change” in this section.)

1. AWOP Team Co-Leader - Nancy Feagin: Program oversight and reporting, Data collection, management and evaluation, Coordination of regional and HQ staff, data integrity activities and training, represent WA in Region 10 AWOP; ~0.8 FTE
2. AWOP Team Co-Leader - Stephen Baker: Technical Assistance, CPE consultant, Operator coaching, Represent WA in Region 10 AWOP; ~0.7 FTE
3. Regional Engineers & Surface Water Specialists: Technical assistance, data integrity, CPE participant:
 a. Russell Mau, Jeff Johnson; Eastern Regional Office; ~0.1 FTE/ea
 b. Nick Fitzgerald; Southwest Regional Office; ~0.1 FTE
 c. Jolyn Leslie; Northwest Regional Office ~0.2 FTE
4. Other regional engineers: Technical assistance, data integrity, CPE participant; ~0.4 FTE in total
5. Technical support: Steve Deem; ~0.1 FTE
6. Data entry: Kerry Herd; ~0.1 FTE
7. Management Sponsor: Derek Pell

Description of Former AWOP Team Members:

Please provide the name of former AWOP team members, and their reason for leaving the team. This information is for historical purposes and also to support networking as AWOP continues to expand.

(Note that if you submitted this information in 2019, that information is being provided and if there are no changes, simply indicate “no change” in this section.)

3. Teresa Walker, Southwest Regional Office – Retired from state service
4. Nathan Ikehara, technical assistance & data integrity – Now regional engineer in Eastern Regional Office, ODW
5. Sam Perry, technical assistance & training – Now at EPA R.10
<table>
<thead>
<tr>
<th>Inventory of State-Wide Treatment Facilities¹</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid rate filtration treatment plants²,³</td>
<td>57</td>
</tr>
<tr>
<td>Utilizing static settling without tubes or plates</td>
<td>7</td>
</tr>
<tr>
<td>Utilizing static settling with tubes or plates</td>
<td>16</td>
</tr>
<tr>
<td>Utilizing sludge blanket clarification (upflow, pulsator)</td>
<td>0</td>
</tr>
<tr>
<td>Utilizing contact adsorption clarification</td>
<td>19</td>
</tr>
<tr>
<td>Utilizing sludge recirculation (including ballasted clarification)</td>
<td>2</td>
</tr>
<tr>
<td>Utilizing DAF, or other alternative clarification process</td>
<td>2</td>
</tr>
<tr>
<td>Utilizing direct/in-line filtration</td>
<td></td>
</tr>
<tr>
<td>Utilizing packaged filtration (package plants)</td>
<td>35</td>
</tr>
<tr>
<td>Slow sand filter plants</td>
<td>19</td>
</tr>
<tr>
<td>Diatomaceous earth filter plants</td>
<td>5</td>
</tr>
<tr>
<td>Membrane treatment plants</td>
<td>14</td>
</tr>
<tr>
<td>Bag or cartridge filtration plants</td>
<td>34</td>
</tr>
<tr>
<td>Primary disinfectant</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>132</td>
</tr>
<tr>
<td>Chloramines</td>
<td>0</td>
</tr>
<tr>
<td>Ozone</td>
<td>4</td>
</tr>
<tr>
<td>UV</td>
<td>5</td>
</tr>
<tr>
<td>Secondary disinfectant</td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td></td>
</tr>
<tr>
<td>Chloramines</td>
<td>1</td>
</tr>
</tbody>
</table>

¹Limited to surface water treatment plants (includes surface, GUDI, blended sources).

²All surface water treatment plants, except cartridge, membrane and slow sand.

³When a plant utilizes multiple treatment processes or configurations identified below, please include them all in this inventory, e.g., a package plant that utilizes a CAC will be included as a rapid rate plant using CAC and packaged filtration.
AWOP Vision:

Please describe the vision for your AWOP

- Protect public health and reduce the risk of waterborne disease by assuring that surface water treatment systems are properly designed, constructed, operated and maintained.
- All systems meet regulatory requirements and understand that compliance with regulatory requirements is the minimum performance level to attain.
- Surface water systems produce and provide optimal water quality from their facilities.
Status Component Implementation:

Please describe status component activities that are implemented in your agency, e.g., (are water systems ranked according to public health risk and how is this information used; how is water system data integrity ensured):

We use maximum daily CFE data to rank systems into three groups:

- **Category 1** – meet optimization goals. 95th % CFE ≤ 0.10 NTU and Max CFE ≤ 0.30 NTU
- **Category 2** – 95th % CFE ≤ 0.20 NTU and Max CFE = 0.31 - 0.80 NTU or 95th % CFE = 0.11 - 0.20 NTU and Max CFE ≤ 0.80 NTU
- **Category 3** - 95th % CFE > 0.20 NTU or Max CFE > 0.80 NTU

Category 1 plants are considered for our recognition program

Category 2 plants are targeted for technical assistance and training, including PBT and CPEs

Category 3 plants are targeted for compliance action – these often have violations.

Targeted Performance Improvement (TPI) Implementation:

Please list all activities that are implemented as TPI activities in your state, e.g., CPEs, PBT, Enhanced Sanitary Surveys, technical assistance, other):

- CPE
- PBT*
- CTA*
- Training
- Sanitary Survey
- Recognition (Awards) Program

*All on-site AWOP enhancement activities temporarily put on hold for 2020-2021, as ODW staff assisted during DOH’s Covid-19 pandemic response.
AWOP Maintenance Component Implementation:

Integrate

Please check the following areas where AWOP has been integrated into the PWSS Program:

Plan Reviews_X__ Permitting_____ Capacity Development__X___ Operator Training_X__
Technical Assistance_X__ DWSRF Prioritization_X____ Enforcement_____ Sanitary Surveys_X_
Other(identify)__

Enhance

Please describe any AWOP enhancements that have been implemented in your program. One example could include modifying status component criteria

- Published slow sand filtration optimization guidelines
- Distributed DE filtration optimization guidelines
- Notified systems re: required mandatory back-up for certified operator position
- Coordinated SCADA reliability with minimum staffing requirements
Sustain

Please describe any activities that you implement to sustain your agency’s AWOP. Some examples could include efforts to promote and incentivize AWOP (e.g., publish regular newsletter, awards program, AWOP participation = higher ranking for grant/loan funding, etc.).

- Awards program
- Presentations and reports to internal staff and management
- Articles in regular internal and external newsletters
- Presentations at local conferences and training

Lessons Learned:

Please list “lessons learned” that you feel would be helpful to other programs, e.g., how to build and maintain internal support, how to integrate AWOP into your PWSS program, etc). If you are new to AWOP, please list a question or concern you’d like to know more about.

We have found that the most effective strategy for Category 2 (nearly optimized) systems is to help them achieve optimized performance using training and technical assistance.

The most effective strategy for Category 3 (bottom-performing) systems appears to be best achieved: 1) through restructuring; 2) by replacement of surface water with a different type of source (groundwater or purchased) or; 3) through the development of a more community-appropriate and sustainable technology such as membrane or slow sand filtration. Category 3 plants are typically found to be serving a service population of 3300, or less.
<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Applies to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial</td>
<td>Minimum Data Monitoring Goal Raw Water Turbidity</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Record maximum daily raw water turbidity.</td>
</tr>
<tr>
<td>Microbial</td>
<td>Individual Sedimentation Basin Performance and Monitoring Goals</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Settled water turbidity ≤ 2 NTU in 95% of readings when the annual average raw turbidity is > 10 NTU. Optimization is based on the daily maximum values recorded from all readings. — Settled water turbidity ≤ 1 NTU in 95% of readings when the annual average raw turbidity is ≤ 10 NTU. Optimization is based on the daily maximum values recorded from all readings. — Record individual sedimentation basin effluent turbidity readings at intervals of 4-hours or less if taking grab samples, or 15 minutes or less for continuous monitoring.</td>
</tr>
<tr>
<td>Microbial</td>
<td>Individual and Combined Filter Performance and Monitoring Goals</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Combined filter effluent turbidity ≤ 0.10 NTU in 95% of readings. Optimization is based on the daily maximum values recorded from all readings. — Individual filter effluent turbidity ≤ 0.10 NTU in 95% of readings (excluding 15-minute period following filter backwash). Optimization is based on the daily maximum values recorded from all readings. — Post backwash individual filter effluent turbidity for filters without filter-to-waste capability: Maximum individual filter effluent turbidity following backwash ≤ 0.30 NTU and achieve ≤ 0.10 NTU within 15 minutes. — Post backwash individual filter effluent turbidity for filters with filter-to-waste capability: Minimize individual filter effluent turbidity during filter-to-waste period and record maximum value. Return the filter to service at ≤ 0.10 NTU. — Record individual and combined filter effluent turbidity readings at intervals of 1-minute or less for continuous monitoring.</td>
</tr>
<tr>
<td>Microbial</td>
<td>Disinfection Performance and Monitoring Goals</td>
<td>Rapid Rate Filtration Plants</td>
<td>— Meet CT requirements to achieve inactivation of Giardia and viruses plus a system-specific factor of safety. — Record disinfectant residual, temperature, and pH at maximum daily flow for CT calculations.</td>
</tr>
<tr>
<td>Disinfection By-Product</td>
<td>Plant Effluent Disinfection Byproducts (DBPs) Performance and Monitoring Goals</td>
<td>Surface Water and Groundwater Under the Direct Influence of Surface Water Plants</td>
<td>— System Specific Targets: Could be a discrete value or range that is based on a running annual average. Recommended goal value/range should be 30% to 50% of long term LRAA goals (e.g., 20-30 ppb for TTHM, 15-20 ppb for HAAS). — Collect quarterly TTHM and HAAS samples at the plant effluent and distribution system compliance sites.</td>
</tr>
<tr>
<td>Disinfection By-Product</td>
<td>Enhanced Coagulation Performance and Monitoring Goals</td>
<td>Surface Water and Groundwater Under the Direct Influence of Surface Water Plants</td>
<td>—Meet Stage 1 D/DBP Rule TOC removal requirements for enhanced coagulation, which are based on source water alkalinity and TOC levels, or an alternative compliance criterion, as a running annual average (RAA) of the performance ratio (actual TOC removal/required TOC removal) plus a factor of safety of 10% (or performance ratio ≥ 1.1). —Collect monthly total organic carbon samples for raw and treated water (only applies to parent systems).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Disinfection By-Product</td>
<td>Disinfection Performance and Monitoring Goal</td>
<td>Surface Water and Groundwater Under the Direct Influence of Surface Water Plants</td>
<td>—Meet CT requirements to achieve inactivation of Giardia and viruses plus a system-specific factor of safety. —Record disinfection residual, temperature, and pH at maximum daily flow for CT calculations (only applies to parent systems).</td>
</tr>
<tr>
<td>Distribution System</td>
<td>Disinfection Byproducts Performance and Monitoring Goals</td>
<td>Parent and Consecutive Water Systems that Utilize any Secondary Disinfectant</td>
<td>—Individual Site Goal: Quarterly Maximum Locational Running Annual Average TTHM/HAA5 values not to exceed 70/50 ppb. —Long-Term System Goal: Average of Maximum Locational Running Annual Average TTHM/HAA5 values not to exceed 60/40 ppb (the average of the last 8 quarters cannot exceed 60/40 ppb). —For systems in compliance with the TTHM and HAA5 MCLs, collect quarterly DBP samples at all compliance locations; for systems not in compliance, collect monthly samples.</td>
</tr>
<tr>
<td>Free Chlorine Distribution System</td>
<td>Disinfection Performance and Monitoring Goals</td>
<td>Parent and Consecutive Water Systems that Utilize Free Chlorine as a Secondary Disinfectant</td>
<td>—Maintain ≥ 0.20 mg/L free chlorine residual at all monitoring sites in the distribution system, at all times. —Monitoring should be performed at least monthly, but more frequently at critical times (i.e., summer months). —Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites based on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total).</td>
</tr>
<tr>
<td>Plants that Utilize Chloramine</td>
<td>Disinfection: Ammonia Control Performance and Monitoring Goals</td>
<td>Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant</td>
<td>—Maintain a detectable free ammonia residual in the plant effluent ≤ 0.10 mg/L as NH3-N. —Monitor free ammonia at least once per day in the plant effluent. • The monitoring frequency may be adjusted based on the variability observed over an extended period of time. • Free ammonia may be monitored in the source water periodically (e.g., once per week) to assess variability.</td>
</tr>
<tr>
<td>Plants that Utilize Chloramine</td>
<td>Operational Guideline</td>
<td>Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Chlorine and Ammonia Dosing</td>
<td></td>
<td>— Maintain a chlorine-to-nitrogen mass ratio between 4.5:1 and 5.0:1 (or chlorine-to-ammonia mass ratio between 3.7:1 and 4.1:1), which should result in a detectable free ammonia in the plant effluent that is ≤ 0.10 mg/L as NH3-N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chloramine Distribution System</th>
<th>Disinfection: Monochloramine and Nitrification-Related Parameters</th>
<th>Performance and Monitoring Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent and Consecutive Water Systems that Utilize Chloramine as a Secondary Disinfectant</td>
<td>— Maintain ≥ 1.50 mg/L monochloramine residual at all monitoring sites in the distribution system, at all times, to provide a disinfection barrier against both microbial contamination and nitrification prevention.</td>
<td>— Monitor monochloramine, free ammonia, and nitrite in the distribution system and at the entry points (to establish a baseline).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monochloramine and free ammonia should be monitored at all sample locations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nitrite should be monitored at sample locations where monochloramine is ≤ 1.50 mg/L; nitrate may also be monitored, to further assess nitrification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample locations should include bacteriological and DBP compliance sites, all distribution system entry points (e.g., plant effluent, consecutive system connections), all tanks (preferably while draining), and identified critical sites based on investigative sampling (minimum of one critical site in each quadrant of the system, four sites total).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitoring should be done at least monthly, but more frequently at critical times (e.g., summer months).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution System</th>
<th>Operational Guidelines</th>
<th>Parent and Consecutive Water Systems that Contain Storage Tanks (any secondary disinfectant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Operations</td>
<td></td>
<td>— Maintain an average turnover time < 5 days; or establish and maintain a water turnover rate at each storage facility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Maintain good mixing (i.e., Performance Ratio ≥ 1) at all times; for tanks where the PR cannot be calculated, adequate mixing (i.e., uniform water quality) should be confirmed by alternate means (e.g., tank profiling/water quality sampling).</td>
</tr>
</tbody>
</table>